Home Publications People Schedule Projects Teaching Join Us
Arabidopsis triterpenoids

Using functional genomics to determine how and why plants synthesize diverse triterpenoids


A Joint Project Between:
Seiichi P.T. Matsuda, Professor
Departments of Chemistry and of Biochemistry and Cell Biology
matusda@rice.edu
Bonnie Bartel, Professor
Department of Biochemistry and Cell Biology
bartel@rice.edu

Dereth PhillipsProject summary:  Plants biosynthesize an amazing array of structurally diverse small molecules.  The purpose of this multidisciplinary collaborative research is to determine how and why plants synthesize diverse triterpenoids.  This project is integrating reverse genetics in Arabidopsis, heterologous expression of cDNAs in yeast, spectroscopic and chromatographic structural determination, and gene expression analysis to elucidate the function of Arabidopsis triterpenoid biosynthetic genes and thereby triterpenoid biosynthetic pathways, control mechanisms, and biological function.  Three of the characterized triterpenoid biosynthetic enzymes convert a shared substrate to different compounds; other enzymes to be studied may similarly provide structural diversity, may metabolize different substrates, or may provide means to spatially or temporally control expression and thus product formation.  The effects of the mutations on plant growth, development, and triterpenoid composition will allow linkage of each triterpenoid biosynthetic gene with an enzyme of known catalytic activity and a specific biological role.  Genes to be studied (see figure) include those apparently encoding oxidosqualene cyclases, a large family of enzymes that convert oxidosqualene to one or more cyclic triterpene skeletons, farnesyl pyrophosphate synthases, squalene synthases, squalene epoxidases, and cycloeucalenol isomerase.  This work will provide a comprehensive accounting of triterpenoid skeletons synthesized by Arabidopsis, establish which compounds are derived from each gene product, and determine the spatial and temporal expression patterns of the various biosynthetic genes.  Catalytic motifs identified in these enzymes will facilitate accurately predicting the reactions catalyzed by similar enzymes discovered by genome projects in other organisms.  These experiments will not only elucidate the biological importance of triterpenoid diversity, facilitating future modifications for agricultural benefit, but will provide students with broad interdisciplinary training that bridges modern chemistry and biology.
Current personnel:

Post Docs:

Dereth Phillips
Hui Shan
Quanbo Xiong

Graduate Students:

Maria Kolesnikova
Jeanne Rasbery

Undergraduates:

Mary Kay Thompson

Jeanne Rasbery


Triterpenoid biosynthesis in Arabidopsis.  Enzymes encoded by genes being studied are indicated by solid arrows.  Dashed arrows indicate multiple steps. (back to top)


 


Publications on Arabidopsis triterpenoids:
Other Bartel lab projects:
Auxin conjugates, IBA, peroxisomes
auxin signaling, microRNAs

Trinorlupeol: a major nonsterol triterpenoid in Arabidopsis.
Shan, H., Wilson, W.K., Phillips, D.R., Bartel, B., and Matsuda, S.P.T. (2008) Organic Letters 10, 1897-1900.
Abstract; full text

Arabidopsis thaliana SQUALENE EPOXIDASE 1 is essential for root and seed development.
Rasbery, J.M., Shan, H., LeClair, R.J., Norman, M., Matsuda, S.P.T., and Bartel, B. (2007) Journal of Biological Chemistry 282, 17002-17013.
Abstract; full text

Biosynthetic diversity in plant triterpene cyclization.
Phillips DR, Rasbery JM, Bartel B, Matsuda SPT. (2006) Current Opinion in Plant Biology 9, 305-314.
Abstract; full text

Enzymatic synthesis of an indole diterpene by an oxidosqualene cyclase: Mechanistic, biosynthetic, and phylogenetic implications.
Xiong, Q., Zhu, X., Wilson, W.K., Ganesan, A., and Matsuda, S.P.T.  J. Am. Chem., 125 (2003): 9002-9003.

Abstract; PDF

Mutagenesis approaches to deduce structure-function relationships in terpene synthases.
M. J. R. Segura, B. E. Jackson, and S. P. T. Matsuda.  Nat. Prod. Rep., 20 (2003): 304-317.

Abstract

Subcellular localization of oxidosqualene cyclases from Arabidopsis thaliana, Trypanosoma cruzi, and Pneumocystis carinii expressed in yeast.
P. Milla, F. Viola, S. Oliaro-Bosso, F. Rocco, L. Cattel, B. M. Joubert, R. J. LeClair, Matsuda, S. P. T., and G. Balliano. Lipids, 37 (2002): 1171-1176.

Abstract

Directed evolution experiments reveal mutations at cycloartenol synthase residue His477 that dramatically alter catalysis.
M. J. R. Segura, S. Lodeiro, M. M. Meyer, A. J. Patel, and S. P. T. Matsuda.  Org. Lett., 4 (2002): 4459-4462. 

Abstract; PDF

Directed evolution to generate cycloartenol synthase mutants that produce lanosterol.
M. M. Meyer, R. Xu, and S. P. T. Matsuda.  Org. Lett., 4 (2002):1395-1398. 

Abstract; PDF

Functional cloning of an Arabidopsis thaliana a cDNA encoding cycloeucalenol cycloisomerase.
M. A. Lovato, E. A. Hart, M. J. R. Segura, J.-L. Giner, and S. P. T. Matsuda.  J. Biol. Chem., 275 (2000): 13394-13397.

Abstract; PDF

A tyrosine to threonine mutation converts cycloartenol synthase to an oxidosqualene cyclase that forms lanosterol as its major product.
J. B. R. Herrera, W. K. Wilson, and S. P. T. Matsuda.  J. Am. Chem. Soc., 122 (2000): 6765-6766.

PDF

Arabidopsis thaliana LUP1 converts oxidosqualene to multiple triterpene alcohols and a triterpene diol.
M. J. R. Segura, M. M. Meyer, and S. P. T. Matsuda.  Org. Lett., 2 (2000): 2257-2259.

Abstract; PDF

Steric bulk at cycloartenol synthase position 481 influences cyclization and deprotonation.
S. P. T. Matsuda, L. B. Darr, E. A. Hart, J. B. R. Herrera, K. E. McCann, M. M. Meyer, J. Pang, H. G. Schepmann, and W. K. Wilson.  Org. Lett., 2 (2000): 2261-2263.

Abstract; PDF

Oxidosqualene cyclase residues that promote formation of cycloartenol, lanosterol, and parkeol.
M.M. Meyer, M.J.R. Segura, W.K.Wilson, and S.P.T. Matsuda.  Angew. Chem., 39 (2000): 4090-4092.

PDF

Directed evolution to investigate steric control of enzymatic oxidosqualene cyclization. An isoleucine to valine mutation in cycloartenol synthase allows lanosterol and parkeol biosynthesis. 
E. A. Hart, L. Hua, L. B. Darr, W. K. Wilson, J. Pang, and S. P. T. Matsuda.  J. Am. Chem. Soc., 121 (1999): 9887-9888.

PDF

Cloning and characterization of the Arabidopsis thaliana lupeol synthase gene.
Herrera, J.B.R., Bartel, B., Wilson, W.K., and Matsuda, S.P.T. (1998) Phytochemistry 49, 1905-1911. 

Abstract;full text; PDF

Isolation of an Arabidopsis thaliana gene encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen.
Corey, E.J., Matsuda, S.P.T., and Bartel, B. (1993) Proc. Natl. Acad. Sci. USA 90, 11628-11632. 

Abstract; PDF



Links:

TAIR (The Arabidopsis Information Resource)
NSF-funded 2010 projects
The Salk Institute Genomic Analysis Laboratory 
(T-DNA inserts and full-length cDNAs)
American Society of Plant Biologists
Plant Cell, Plant Physiology

 

Biochemistry