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Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

1 Radiation from Relativistic Charges

For a final foray, we now consider relativistic charges and the general formal-
ism for their radiation. This means that the dipole approximation must be L&L

Sec. 73relinquished. Hereafter we will consider just a single charge, and the obtained
results can then be summed for an ensemble of charges.

1.1 Radiated Power

We seek first the total power of radiation from a relativistic charge. The
simplest way to proceed is to Lorentz transform quantities from the frame
where the charge is instantaneously at rest. In that frame, the Larmor dipole
formalism applies if the charge accelerates, and one can write down

dErad
dt

=
2q2

3c3
a2 ,

dPrad

dt
= 0 . (1)

Here qa = d̈ defines the dipole moment acceleration vector. The second
relation is for the total radiated momentum, and is an obvious result given
the symmetry of the dipole antenna pattern. These can be combined and
expressed in covariant form, noting that dxα = uαds :

dPα
rad = −2q2

3
aβaβ dx

α for aβaβ = −a
2

c4
with aβ =

duβ

ds
. (2)
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Remember that in the frame of instantaneous rest, the four-acceleration can
be written aβ = (0, a/c2, 0, 0) and so the scalar product for the acceleration
is both obvious, and also a Lorentz invariant. It is used to substitute for
the magnitude a of the acceleration vector. Thus, the verity of the α = 0
form of Eq. (2) is apparent. Since dxi = 0 in the instantaneous rest frame,
the space components are trivially zero and the momentum equation is also
verified. The result is a fully covariant form for radiated 4-momentum.1

This result is clearly applicable in any inertial frame, and so can be Lorentz-
transformed to frames where the charge is not at rest. To render this more
useful, the 4-acceleration can now be replaced by the covariant Lorentz force:

aβ ≡ duβ

ds
=

q
mc2

F βµuµ ⇒ dPα
rad = − 2q4

3m2c4
(
F βµuµ

)(
Fβνu

ν
)
dxα .

(3)
The electromagnetic field tensor has thus appeared, and so the radiated en-
ergy and momentum can be directly connected to charge motions in electric
and magnetic fields, and in any frame of reference. Setting β = v/c ,

F βµuµ = γ
(
E · β, E + β ×B

)
. (4)

This can be substituted into the radiation equation and the α = 0 energy
component formed, yielding the radiated power:

dErad
dt

=
2q4

3m2c3
γ2
{(

E + β ×B
)2
−
(
E · β

)2}
. (5)

When β → 0 and γ → 1 , this reduces to the original rest form using the
correspondence qE/m→ a for acceleration induced by an electric field.

• The power (integrated over all solid angles) thus generally scales as γ2 .
This is to be expected, with contributions of Lorentz factors from the Doppler
shift and the time dilation. However, if B = 0 , and the motion is exactly
along a uniform electric field vector ( v ‖ E ), then an additional 1/γ2 factor
appears so that the radiated power is an invariant during the motion.

1L&L have an error of a factor of 1/c in this and a subsequent equation.
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1.2 Angular Emission Profiles

We now turn our attention to the angular distribution of the radiation. This
cannot easily be worked in terms of covariant forms, so we revert to the
Liénard-Wiechart potentials. Since we are interested in far-zone results, one
retains terms of leading order 1/R , so that

Arad =
q β

R(1− n · β)
⇒ Erad =

q
cR

n×
{

(n− β)× β̇
}

(1− n · β)3
, (6)

both being evaluated for retarded times t′ = t−R/c . The magnetic field is
just Brad = n×E . Observe that the Larmor dipole formula can be recovered
when β � 1 using qβ̇c = d̈ . The energy radiated into solid angle dΩ is
simply dErad = (c/4π)E2R2 dΩdt . Performing the vector algebra,

dErad
dΩdt

=
q2

4πc

{
2(n · β̇) (β · β̇)

(1− n · β)5
+

(β̇)2

(1− n · β)4
− (n · β̇)2

γ2(1− n · β)6

}
ret

. (7)

The first term is small in the non-relativistic limit, wherein the remaining
two give a result proportional to |β̇ × n|2 , as expected.

• The appearance of the multiple factors 1−n ·β in the denominators of
the terms defines a strong enhancement of the radiation in directions close to
the charge’s instantaneous β . This is due to a combination of time dilation,
Doppler shifting, and light aberration influences. When β ∼ 1 , the emission
is highly-collimated because 1− β cos θ ≈ (1/γ2 + θ2)/2 , with an angle

θ ∼ 1
γ

=
√

1− β2 (8)

that defines the opening half-angle of the Lorentz cone of the radiation.

• There are clearly two directions where the emission is identically zero,
those where the vector n − β is parallel or anti-parallel to the acceleration
vector, i.e. β̇ . This defines relativistic aberration of the antenna pattern.

To determine the total emission, integrated over time, it is appropriate to
work with the t′ retarded time variable. Thus Eq. (7) can be used to evaluate

dErad
dΩ

=

∫
dErad
dΩdt

(1− n · β) dt′ as dt = (1− n · β) dt′ . (9)

In general, this has to be computed numerically.
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• To illustrate the character of these angular distributions, we highlight
two special cases. The first is when the charge’s velocity and acceleration are
parallel. Then the magnetic field of the wave is

Brad =
q
cR

β̇ × n
(1− n · β)3

=
qβ̇
cR

β̂ × n
(1− n · β)3

. (10)

If θ is the polar angle relative to v (i.e., cos θ = n · β̂ , contrasting the dipole
formalism where Θ is the angle between n and β̇ ), then in this case θ = Θ
and the radiation angular profile is (writing β̇ → β̇‖ )

dErad
dΩdt

=
q2

4πc
(β̇‖)

2 sin2 θ

(1− β cos θ)6
. (11)

This is depicted in the following Figure. It is applicable to a linear accel-
eration of a charge in a uniform E field, and a 1D relativistic SHO. The
angle-integrated power dErad/dt is routinely obtained in analytic form.

Plot: Radiation from a Linearly-Accelerated Charge

• In contrast, if the acceleration is perpendicular to the charge’s velocity,
as is the circumstance for synchrotron radiation, then the aberration of
the antenna pattern is given by (writing β̇ → β̇⊥ )

dErad
dΩdt

=
q2

4πc
(β̇⊥)2

{
1

(1− β cos θ)4
− sin2 θ cos2 φ
γ2(1− β cos θ)6

}
. (12)

Here φ is the azimuthal angle of n relative to the plane defined by v and a,
i.e., about the v× a vector. For the case of φ = 0 , this is illustrated in the
corresponding Figure.

Plot: Radiation: charge accelerating orthogonal to its velocity

In this case, as for the first, the distortion of the antenna pattern lobes in the
direction of β is evident as the charge becomes relativistic, and the zeroes
are when β̇ ∝ n− β .
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Radiation from a Linearly-Accelerated Charge

• The radiation pattern 
(section) for a charge 
accelerating parallel to its 
velocity v for three speeds:
– b = 0.2 (small blue lobes), 
– b = 0.4 (dashed orange) 
– b = 0.5 (large green).
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Radiation: Acceleration Perpendicular to Velocity

• The radiation pattern (section) for a charge accelerating 
perpendicular to its velocity v for three speeds:
– b = 0.1 (small blue lobes), 
– b = 0.2 (dashed orange) 
– b = 0.3 (large green).

1 2 3 4 x -> v

-1.0

-0.5

0.5

1.0

y -> a

n
v



2 Synchrotron Radiation

As a final example, we consider synchrotron radiation, the relativistic
analog of the cyclotron mechanism. The motion is described by the Lorentz
force that for the special case of circular motion provides an acceleration
orthogonal to the velocity at any time:

a = v × ωB , ω ≡
∣∣ωB

∣∣ =
qB
γmc

. (13)

The gyroradius is pc/qB and the total radiated power can be quickly deter-
mined from Eq. (5):

dErad
dt

=
2q4

3m2c3
γ2
(
β ×B

)2 → 2r2qc
3

γ2β2B2 . (14)

Obtaining the angular distribution of the synchrotron radiation is slightly
more involved. The instantaneous distribution is given in Eq. (12). Yet, as
the charge moves in a circle, the definition of angles changes. Physically,
the circular motion is not resolved, so it is motivated to integrate over the
gyroperiod 2π/ωB , i.e. azimuths φg = ωBt . Let the observer direction n be
inclined at an angle θ to the plane of the circular orbit, and the projection
of n onto the orbit (y, z) plane correspond to azimuth φg = 0 . Then the
instantaneous direction between n and v satisfies β · n = β cos θ cosφg as

v̂ = cosφg ŷ + sinφg ẑ and ˆ̇v = − sinφg ŷ + cosφg ẑ , (15)

and n = cos θ ŷ + sin θ x̂ .

Plot: Synchrotron radiation geometry

It follows that the time-averaged value of the intensity in Eq. (7) is〈
dErad
dΩdt

〉
t

=
r2qc

8π2
β2

γ2
B2

∫ 2π

0

(1− β2) sin2 θ + (β − cos θ cosφg)
2

(1− β cos θ cosφg)
5 dφg .

(16)
The integral can be evaluated analytically.〈

dErad
dΩdt

〉
t

=
r2qc
32π

β2

γ2
B2

{
8− 4 cos2 θ − β2(1 + 3β2) cos4 θ

(1− β2 cos2 θ)7/2

}
. (17)
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