
Thomson Scattering Geometry
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• Scattering of linearly-polarized radiation by an electron.
• Fig. 3.6 of Rybicki & Lightman: Radiative Processes in Astrophysics (1979). 
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• The effective coupling between the incoming and outgoing radiation is
captured in the cross section σ . This measures the ratio between the
radiated intensity and the incoming intensity, the latter being benchmarked
by the magnitude S = |S| = c|E|2/4π of the Poynting flux vector. We
therefore define the differential cross section dσ/dΩ by〈

dErad
dΩ dt

〉
t

=
〈
|S|
〉
t

dσ
dΩ

, (23)

where time averages over the electromagnetic wave properties are taken.
Since the Poynting flux is energy per unit area per unit time, the cross
section is an effective area. We seek to determine dσ/dΩ .

Given the time variation of the dipole moment, the Larmor formalism quickly
yields the radiated intensity:

dErad
dΩ dt

=
|d̈× n|2

4πc3
=

q4

4πm2c3
∣∣E× n

∣∣2 . (24)

As usual, n is the unit vector in the direction of the outgoing wave, which
makes an angle Θ to polarization direction E0 . The time average over a
wave period 2π/ω can be taken:〈

dErad
dΩ dt

〉
t

=
q4

m2c4

{
c

4π
|E0|2

〈
cos2(ωt+ α)

〉
t

}
︸ ︷︷ ︸ sin2 Θ .

(25)〈
|S|
〉
t

The quantity inside the curly braces is the wave’s time-averaged Poynting
flux 〈|S|〉t , and so using Eq. (23) we infer the differential cross section:

dσ
dΩ

= r2q sin2 Θ , rq =
q2

mc2
. (26)

As for cyclotron radiation, rq is the classical electrodynamic radius, and for
the case of the electron it is r0 = e2/mec

2 = 2.818 × 10−13 cm. Integration
over solid angles yields the Thomson cross section

σ =
8πr2q

3
= 6.652× 10−24 cm2 for electrons . (27)
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Again it applies to a purely linearly-polarized wave, and the light deflection
mechanism is referred to as Thomson scattering.

• The scattering of the wave preserves the frequency of the wave (obvious
from the power spectrum considerations), the electric field polarization, and
the electric field amplitude, to leading order. The latter point is not obvious,
but is expected if the charge only performs small amplitude oscillations.

• Finally consider the scattering of unpolarized light. Here the orientations
of the E0 vector are uniformly distributed in the (y, z) -plane. Let θ be
the angle between directions of the incident and scattered waves. Then for
azimuthal angle φ of the incoming wave E = E0ê vector about the x -axis,

ê = cosφ ŷ + sinφ ẑ ,
(28)

n = cos θ x̂+ sin θ
(
cosφn ŷ + sinφn ẑ

)
.

Here φn is the azimuthal angle of the final wave.

Plot: Unpolarized radiation scattering geometry.

The time average is as before, and the azimuth average of the angle factor
|d̈× n|2 / |d̈|2 in the Thomson differential cross section can then be formed:〈

sin2 Θ
〉
φ

= 1−
〈
(ê · n)2

〉
φ

= 1− sin2 θ
(〈

cos2 φ
〉
φ

cos2 φn +
〈
sin2 φ

〉
φ

sin2 φn

)
(29)

= 1− 1
2

sin2 θ =
1
2

(
1 + cos2 θ

)
.

Note that the ŷ · ẑ cross term is identically zero when averaging over φ .
Therefore the classical differential cross section for unpolarized light is

dσ
dΩ

=
r2q
2

(
1 + cos2 θ

)
, rq =

q2

mc2
. (30)

There is now no zero in radiated intensity, because the antenna pattern (like
a doughnut or toroid) has been rotated about the x -axis. Integrating over
all angles, reproduces the total Thomson cross section, as it should.
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Unpolarized Thomson Scattering

• Geometry of unpolarized Thomson scattering by an electron: e1 and 
e2 are the two linear polarizations of the incoming waves.

• Fig. 3.7 of Rybicki & Lightman: Radiative Processes in Astrophysics (1979). 
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3 Bremsstrahlung

Motion in the Coulomb field implicitly involves acceleration of charges in
unbound hyperbolic trajectories, and so naturally produces electromagnetic
radiation. Since the ballistic charge is the one that emits, if it has a massive
target charge, then it must slow down somewhat. Therefore the process is
termed bremsstrahlung, or “braking radiation.”

Plot: Bremsstrahlung geometry

• The acceleration is greatest at perielektron, so the epoch of nearest
passage dominates the radiation signal, its duration and thus its character-
istic emission frequency. The charge’s trajectory is planar for a single target
charge, and so the emitted radiation is 100% linearly-polarized in this plane.

3.1 Bremsstrahlung in the Dipole Domain

In general, the case of greatest interest is when a beam of particles is projected L&L
Sec. 68toward a target central charge Q , rather than an isolated single collision

between two charges. Therefore, we explore ensemble-averaged interactions,
with the beam represented by a cylindrical morphology. The beam will be
presumed to extend to bmax in impact parameter b , where this scale may
represent a mean separation of the ballistic charges in a plasma. It is also
azimuthally symmetric. The non-relativistic single-particle emission rate is

dErad
dΩ dt

=
|d̈(t)× n|2

4πc3
. (31)

The time dependence d(t) is incurred as a ballistic charge follows its curved
path. One is interested in the total emission, and so we integrate over the
complete duration of its path. The azimuthal average is also taken:

dErad
dΩ

=

∫ bmax

0

2πb db
A

∫ ∞
−∞

〈
dErad
dΩ dt

〉
φ
dt

(32)

=
1

2c3A

∫ bmax

0

b db

∫ ∞
−∞

〈
|d̈(t)× n|2

〉
φ
dt .

Thus 〈. . . 〉φ represents the azimuthal integration, and A = πb2max is the
normalizing cross-sectional area of the beam.
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Bremsstrahlung Geometry

• Bremsstrahlung dipole emission geometry for light in n direction and 
two possible polarizations ei . This is for a charge q deflecting off charge 
Q via the Coulomb interaction, with impact parameter b.
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The azimuthal averages can be expressed in terms of two dipole moment
quantities and the observer angle θ to the beam. Let the incoming beam be
parallel to the x -direction. The cross product is∣∣d̈(t)× n

∣∣2 =
∣∣d̈(t)

∣∣2 − ∣∣n · d̈(t)
∣∣2 . (33)

The dipole moment has components in all three coordinate directions. The
squares sustain pure quadratic terms, but the cross terms average to zero
when sampling azimuthal angles uniformly, since

d̈ =
(
d̈x, d̈⊥ cosφ, d̈⊥ sinφ

)
. (34)

Hence 〈
d̈xd̈y

〉
φ

=
〈
d̈yd̈z

〉
φ

=
〈
d̈zd̈x

〉
φ

= 0 . (35)

Azimuthal symmetry renders the y and z squares identical, and so only
the second derivatives of the total dipole moment and the x -component are
independent quantities at any time. Then〈

(d̈y)
2
〉
φ

=
〈
(d̈z)

2
〉
φ

=
1
2

{
(d̈)2 − (d̈x)

2
}
≡ 1

2
(d̈⊥)2 . (36)

Observe that both (d̈x)
2 and (d̈)2 are independent of the azimuth, and just

depend on the time variable. The observer direction vector is

n =
(
cos θ, sin θ cosφo, sin θ sinφo

)
. (37)

In all generality, one can choose φo = 0 . The averages of Eq. (33) distill into〈
|d̈(t)× n|2

〉
φ

=
1
2

{
(d̈)2 + (d̈x)

2
}

+
1
2

{
(d̈)2 − 3(d̈x)

2
}

cos2 θ . (38)

Inserting this into Eq. (32), we arrive at

dErad
dΩ

= α0 + α2
3 cos2 θ − 1

2︸ ︷︷ ︸
(39)

P2(cos θ)

with Legendre functions P0(cos θ) = 1 and P2(cos θ) being readily identifi-
able. The αi coefficients are

α0 =
1

3c3A

∫ bmax

0

b db

∫ ∞
−∞

(d̈)2 dt

(40)

α2 =
1

6c3A

∫ bmax

0

b db

∫ ∞
−∞

{
(d̈)2 − 3(d̈x)

2
}
dt
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Note that when integrating over emission solid angles dΩ = 2πd(cos θ) , the
term multiplying α2 is zero due to the orthogonality relation for Legen-
dre polynomials, i.e. with P0(cos θ) = 1 . Hence, the total bremsstrahlung
emission in the dipole approximation is

Erad = 4πα0 =
4π

3c3A

∫ bmax

0

b db

∫ ∞
−∞

[
d̈(t)

]2
dt . (41)

The function d̈(t) depends on the impact parameter b , and can be obtained
from the unbound forms for non-relativistic Coulomb trajectories.

• Observe that the angular distribution is symmetric in θ about π/2 .
This applies in the non-relativistic dipole approximation because the forward
and backward portions of the radiation antenna signal contribute equally and
symmetrically. This is no longer the case for relativistic bremsstrahlung due
to the inherent asymmetry associated with Doppler boosting.

• Now consider radiation E fields instead: To develop the polariza-
tion of the radiation, we will specify two orthogonal polarization states: one
in the x̂− n plane (which we choose to be the (x, y) plane) containing the
beam and the observer direction (denoted ‖ ), and the other orthogonal to
this plane (denoted ⊥ ). The E field vector of the bremsstrahlung satisfies

c2R E = c2R
(
B× n

)
=
(
d̈× n

)
× n = d̈− n

(
n · d̈

)
. (42)

Squaring this gives∣∣E∣∣2 ∝ ∣∣∣(d̈× n
)
× n

∣∣∣2 =
∣∣d̈(t)

∣∣2 − ∣∣n · d̈(t)
∣∣2 , (43)

just as it should since the electric and magnetic fields have the same intensity.
The angle averaging algebra is just as before, and clearly only the

〈
(d̈z)

2
〉
φ

contribution gives net polarization perpendicular to the (x, y) -plane. This
is specified in Eq. (36), and so we can recast the result in Eq. (38) as〈∣∣(d̈× n

)
× n

∣∣2〉
φ

=
1
2

{
(d̈)2 − (d̈x)

2
}

︸ ︷︷ ︸+ (d̈x)
2 +

1
2

{
(d̈)2 − 3(d̈x)

2
}

cos2 θ︸ ︷︷ ︸ .
(44)

E⊥rad E‖rad
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Thus, we have identified the algebraic structure associated with the polar-
ization decomposition of the bremsstrahlung emission that now replaces the
αi construction. Therefore, the perpendicular emission state has

dE⊥rad
dΩ

=
1

4c3

∫ bmax

0

b db

∫ ∞
−∞

{
(d̈)2 − (d̈x)

2
}
dt , (45)

which, as expected, should be independent of observer angle θ , and the
parallel polarization in the beam-observer direction plane is

dE‖rad
dΩ

= cos2 θ
dE⊥rad
dΩ

+
sin2 θ
2c3

∫ bmax

0

b db

∫ ∞
−∞

(d̈x)
2 dt , (46)

which contains all the angular dependence, again as expected.

• Finally, we posit the frequency spectrum in the most efficient manner.
Derivation from first principles would proceed along the lines of that above for
the temporal integration. Everywhere in place of the temporal integration,
one could substitute∫ ∞

−∞

(
d̈
)2
dt →

∫ ∞
−∞

(
ω2dω

)2 dω
2π

, (47)

which is essentially obtained by using Parseval’s relation for Fourier trans-
forms combined with the second derivative operation in Fourier space. The
resolution of components and the azimuthal angle averaging then proceeds
as before, and the final result can be quickly written down:

dErad
dΩdω

= α0(ω) + α2(ω)
3 cos2 θ − 1

2
, (48)

where

α0(ω) =
ω4

3πc3A

∫ bmax

0

(
dω
)2
b db

(49)

α2(ω) =
ω4

6πc3A

∫ bmax

0

{(
dω
)2 − 3

(
dxω
)2}

b db .

• All the preceding analysis can be adapted for bound Coulomb orbits
of high angular momentum, i.e. rosettes, clearly indicating that in classical
electrodynamics, such orbits are energetically unstable to radiative decay.
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