
11. DIPOLE RADIATION

Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

1 Electric Dipole Radiation

The focus for now is on radiation from non-relativistic particles. For a parti-
cle executing simple harmonic oscillations of frequency ω = 2πv/λ , the scale
of its acceleration is given by v̇ ∼ v ω . The ratio of the radiation to velocity
electric (and magnetic) fields can be expressed simply as

|Erad|
|Evel|

∼ R |β̇|
c
∼
(
v
c

)2 2πR
λ

. (1)

Clearly, in the near zone R . λ , the velocity field dominates the radia-
tion field, whereas in a sufficiently far zone R & λ(c/v)2 the radiation field
dominates so that emission can transpire.

Plot: Dipole Radiation Geometry

• The relative time delays for radiation within our system of charges are
on the scale of δtem ∼ rn · n/c . The relative time delays for changes in L&L

Sec. 67the charge distribution are on timescales of δtn ∼ |rn|/|vn| . For the dipole
radiation formalism to be valid, the process of averaging over the charge
distribution must be robust, and so δtem � δtn must hold. Hence, the
wavelength λ = 2πc/ω of the wave must far exceed the scale L of the sys-
tem. This can only happen when

|vn|
c
� 1 : dipole approximation , (2)

i.e. all charges move non-relativistically.
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Dipole Radiation Geometry
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1.1 The Larmor Formula

We seek a formula for the total power radiated by an accelerating charge in
the far-field zone. The path can start with our vector potential

A ≈ 1
cR

∑
n

∫
j

(
t− R

c
+

rn · n
c

, rn

)
dV → 1

cR

∑
n

qnvn =
ḋ
cR

. (3)

The latter step discretizes the current density using

j →
∑
n

qnvn =
d
dt

(∑
n

qnrn

)
= ḋ , (4)

and removes the relative time retardation between charges, since it is small
in the dipole radiation approximation. Accordingly, we explore the
coherent radiation contribution. The dipole radiation fields then become

Brad =
1
c
∂A
∂t
× n =

1
cR

∂
∂t

(∑
n

qnβn

)
× n ≡ d̈× n

c2R
,

(5)

Erad = Brad × n =
1
c

(
∂A
∂t
× n

)
× n =

(d̈× n)× n
c2R

.

These could equivalently be obtained from our original radiation fields spe-
cialized to the β � 1 limit (with a single retarded time):

Erad =
qn
cR

[
n×

(
n× β̇n

) ]
ret

, Brad =
[
n× Erad

]
ret

. (6)

The signature of these radiation results is that the fields are proportional to
d̈ ; these waves are termed dipole radiation.

Plot: Radiation Geometry for a Moving Charge

If Θ is the angle between n and v̇n or d̈ , then the magnitudes of the
radiation fields are (using (d̈× n)× n = d̈− (n · d̈) n for Erad )

∣∣Erad

∣∣ =
∣∣Brad

∣∣ =

(∑
n

qn|β̇n|
cR

)
sin Θ =

|d̈|
c2R

sin Θ . (7)
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Radiation Geometry for a Moving Charge

• Electric and magnetic radiation field configurations for a slowly 
moving, accelerating charge.  The direction of Brad is into the page.
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This uses the result[
d̈− (n · d̈) n

]2
=
(
d̈
)2[

1− 2 cos2 Θ + cos2 Θ
]

=
(
d̈
)2

sin2 Θ . (8)

The Poynting vector flux in the direction of n is then

S =
c

8π

{∣∣Erad

∣∣2 +
∣∣Brad

∣∣2} =
c

4π
|d̈|

2

c4R2 sin2 Θ . (9)

This is a classic dipole radiation formula with its sin2 Θ angular de-
pendence, and no power along the direction of d̈ for transverse E/M waves.
This is the antenna pattern (toroid) for classical processes like Thomson
scattering, considered shortly. It applies only to non-relativistic charges.

Plot: Radiation Toroidal Antenna Pattern

• Note that the Poynting flux obeys the inverse square law: for the radi-
ated electromagnetic wave(s), energy is conserved in propagating to infinity.

The Poynting flux is the energy per unit time per unit area, so that multi-
plying it by the area element dA = R2dΩ derives the total radiated power:

P ≡ dE
dt

=
|d̈|

2

4πc3

∫
sin2 Θ dΩ . (10)

The integral is 8π/3 and the result is Larmor’s formula for emission from
a single accelerating charge q or a charge ensemble:

P =
2q2β̇2

3c
→ 2 |d̈|

2

3c3
, (11)

since |d̈| = qβ̇c . Observe that the power emitted is proportional to the
square of the charge, and the square of the acceleration.

∗ The direction of Erad is controlled by n and β̇ . If the acceleration is
linear, then the radiation is 100% polarized in the plane of β̇ (or d̈ ) and n.

• For a system of identical particles under no external force, the dipole
moment is proportional to the total mass, and its time derivative is pro-
portional to the velocity of the centre of mass, which does not accelerate.
Therefore, the system has d̈ = 0 and cannot radiate.
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Radiation Toroidal Antenna Pattern

• Antenna emission pattern of dipole radiation of transverse waves.  
• Left is sin2Q cross section, and right is the 3D toroidal representation, 

axi-symmetric about the acceleration axis.
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The power spectrum of radiation is now simply obtained by inserting the
Fourier form of Eq. (5), namely

Bω =
d̈ω × n
c2R

with d̈ω =

∫
eiωt d̈ dt = −ω2dω , (12)

into the general expression for the Fourier power, i.e. radiation spectrum.
The result is

dErad
dω dΩ dt

=
ω4

2πc3
∣∣dω × n

∣∣2 =
ω4

2πc3
∣∣dω

∣∣2 sin2 Θ , (13)

which integrates over solid angles to give

dErad
dω dt

=
4ω4

3c3
∣∣dω

∣∣2 . (14)

Thus, if a system of charges is jostled by an incoming E/M wave with a
relatively low frequency ω0 , the dipole moment will be d ∝ exp{iω0t} and
then dω ∼ const. The system then re-emits power ∝ ω4 ; this is the character
of Rayleigh scattering.

∗ This is precisely the form of scattering pertinent to sunlight that is
incident on the molecules in the sky. Accordingly, blue light is scattered
more, and thus the sky appears blue and not red.
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2 Dipole Radiation Processes

2.1 Cyclotron Radiation

Consider an electric dipole that rotates periodically in a plane with constant
angular rate ωc , i.e. about the x -axis. Suppose that the magnitude of the
dipole is held constant. Then for motion in the (y, z) -plane,

dy = d cosωct , dz = d sinωct . (15)

The dipole moment therefore yields d̈ = −ω2
cd = −ω2

cd (0, cosωct, sinωct) .
The power is proportional to (d̈×n)2 , which varies with time. Accordingly, a
time average (over the period 2π/ωc ) needs to be taken to provide a suitable
measure of the power. Then, if the observer is in the (x, y) -plane, then
n = (sin Θ, cos Θ, 0) , and

1
ω4
c

〈
(d̈× n)2

〉
t

=
〈
(d× n)2

〉
t

=
〈
(d)2

〉
t
−
〈
(n · d)2

〉
t

= d2 −
〈
(d cos Θ cosωct)

2
〉
t

(16)

= d2
(

1− 1
2

cos2 Θ
)

=
d2

2

(
1 + sin2 Θ

)
.

The time-averaged differential power and solid angle-integrated power are1

dErad
dΩ dt

=
ω4
cd

2

8πc3
(
1 + sin2 Θ

)
⇒ dErad

dt
=

2ω4
cd

2

3c3
, (17)

and the spectrum is concentrated at frequency ωc . Of particular interest is the
case where the dipole is formed by a single charge gyrating non-relativistically
in a uniform magnetic field B at the cyclotron frequency ωc = qB/mc .
Since d ≡ qrg = mβ⊥c

2/B for gyromotions, the emission is then of power

dErad
dω dt

=
dErad
dt

δ(ω − ωc) =
2
3

(
q2

mc2

)2

β2
⊥cB

2 δ(ω − ωc) , (18)

and is called cyclotron radiation. Here β⊥c is the gyrational speed, and
rq = q2/mc2 is termed the classical electrodynamic radius of the charge.

1Remember that here Θ is the viewing angle relative to the plane of gyration [con-
trasting the L&L choice], i.e., n = (sin Θ, cos Θ, 0) , so that dΩ = 2π d(sin Θ) .
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2.2 Induced Radiation: Thomson Scattering

The dipole radiation formalism can be applied to charge motions that are L&L
Sec. 78driven by incoming electromagnetic waves. This is the domain of scattering.

• Consider a 100% linearly-polarized electromagnetic wave that jostles a
free charge at rest. The electric field of the wave is in the (y, z) -plane:

E = E0 cos(k · r− ωt+ α) . (19)

Thus the k vector is in the x -direction. The alternating electric field drives
the charge in an oscillation. If the charge moves non-relativistically, then the
magnetic field contribution to the Lorentz force equation can be neglected.
Then the motion is a 1D oscillation in the direction of field vector E0 , and
the equation of motion can be simply solved as an inhomogeneous ODE:

m r̈ = qE ⇒ r = − q
mω2 E0 cos(k · r− ωt+ α) , (20)

motion presumed to take place near r = 0 . The maximum speed of the
induced oscillation is then qE0/(mω) . This must be much less than c , so
the non-relativistic criterion for the applicability of the dipole approximation
is (

vmax

c

)2

≈
(
qE0

mωc

)2

= 4π
q2

mc2
Uwave

mω2 � 1 . (21)

This bounds the intensity of the incoming wave, and is usually not very
restrictive in either terrestrial or astronomical settings: i.e. the dipole for-
malism is widely applicable to this scattering problem.

Assuming this is satisfied, then the amplitude of the oscillation is also small,
sufficiently so that |k · r| . ωrmax/c = qE0/(mωc) � 1 . ωt , and the dis-
placement of the charge in influencing the wave generation can be neglected.
The dipole moment of the charge satisfies

d̈ =
q2

m
E ; (22)

the charge thus radiates, and the process is a scattering of the E/M wave.

Plot: Thomson Scattering Geometry

6



Thomson Scattering Geometry
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• Scattering of linearly-polarized radiation by an electron.
• Fig. 3.6 of Rybicki & Lightman: Radiative Processes in Astrophysics (1979). 
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