
2 Fields of Moving Charges: Large Distances

It is time to treat contained systems of charges that are in motion and there- L&L
Sec. 66fore can radiate electromagnetic waves. So far, we have isolated how charges

respond to fields, and create fields, and also how electromagnetic waves can
exist. To close the loop of connectivity between charges and fields, we explore
how charge motions can generate E/M waves: true electrodynamics.

Plot: Radiation Geometry for a Charge Ensemble

Consider an ensemble of charges distributed within a small, finite volume
V = d3r of dimensions less than some scale L . Let the origin C of coor-
dinates be contained within the volume, and the position of each charge be
denoted by rn , with |rn| ≤ L . Consider a distant observation point O at
position R = Rn such that R� L . At such large distances the potentials
will receive contributions from each charge according to its distance

Rn = |R− rn| ≈ R− rn · n (23)

from the observation point. This Taylor series expansion to leading order
simplifies the retarded potentials. Specifically, the volume integrations do
not depend on factors of R , and so we have two retarded potentials of the
approximate form:

φ =
∑
n

φn(t−Rn/c) ≈
1
R

∑
n

∫
ρ

(
t− R

c
+

rn · n
c

, rn

)
dV

(24)

A =
∑
n

An(t−Rn/c) ≈
1
cR

∑
n

∫
j

(
t− R

c
+

rn · n
c

, rn

)
dV .

Here the summation over q denotes the summation over the contribution
of each discrete charge. In general, the positions rn are determined at the
individual retarded time τn = t−Rn/c . However, for this far-field approx-
imation, these are computed at the common retarded time t−R/c , thereby
incurring a small error that is second order in rn/c .

• This approximation is only valid if λ � L , i.e. the typical wavelength
of the emitted wave far exceeds the size of the charge system.
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Observe that for τ = t − R/c as the “mean” propagation (signal) time of
electromagnetic information out to the observation point, the forms of these
potentials are

Aµ = Aµ
(
cτ + rn · n

)
, (25)

which is precisely the form of a solution to the wave equation in the variables
(cτ, x = R) . Thus, the far-field configuration is an electromagnetic wave, of
non-zero amplitude under suitable conditions to be identified.

• Given that we know we have a plane wave, we can identify its key charac-
teristics. First, its propagation direction is parallel to n , out to the observer.
Next, the wave solutions are transverse waves, so that E · n = 0 = B · n .
Moreover, the electric and magnetic fields are orthogonal to each other, so
E = B× n . We have already established these fields in terms of the vector
potential A , and so write

Brad =
1
c
∂A
∂t
× n , Erad =

1
c

(
∂A
∂t
× n

)
× n . (26)

Here the subscript labels “rad” are introduced to designate the radiation
fields in the wave zone. If we presume that vn = const., then the vector
current j is constant in time, and thus so also is A using Eq. (24). Then it is
deduced that Brad = 0 = Erad , and there is no electromagnetic radiation to
infinity. Accordingly we arrive at a fundamental feature of electrodynamics:
charges must accelerate in order to radiate electromagnetic waves.

As the vector potential in Eq. (25) satisfies the wave equation in Eq. (2), the
time derivative scales with R/c [see also Eq. (24)], so that it follows that

|Brad| ∼
1
R

, |Erad| ∼
1
R

⇒ Uem ∼
1
R2 (27)

at larger distances from the charge ensemble. It follows that the energy
density obeys the inverse square law, signifying conservation of energy flux
in spherical geometry. The flux, of course, is given by the Poynting vector:

S =
c

4π
|Brad|2 n ⇒ dE =

c
4π
|Brad|2R2 dΩ dt . (28)

The conservation law then follows, though it is subject to the implicit as-
sumption that time variations on the scale L/c of the charge ensemble do
not differ much with distance R .
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• Notation comment: the notation used here differs from that employed in
L&L, with the following correspondences: R→ R0 , rn → r and Rn → R ,
the latter variables in each pair being adopted in the textbook.

2.1 Spectral Representation of the Fields

Now we derive the Fourier transforms of the fields, which are needed to
eventually define the radiation spectrum. These are established using the
Landau & Lifshitz normalization for Fourier transforms,1

A(t) =

∫
e−iωt Aω

dω
2π

⇒ Aω =

∫
eiωt A(t) dt . (29)

Into this we insert the retarded potential form for the vector potential from
the charge/current ensemble in Eq. (24):

Aω =
1
cR

∑
n

∫
eiωt

∫
j

(
t− R

c
+

rn · n
c

, rn

)
dV dt (30)

Performing the temporal integration first, we arrive at the Fourier component
of the three-current with a “phase-shift” factor due to the change of variables
in the time integral (this is a signal propagation factor):∫

eiωtj

(
t− R

c
+

rn · n
c

, rn

)
dt = jω e

ikR−ik·rn . (31)

Here we have introduced the wavevector k such that k = k n and |k| = ω/c .
It follows that

Aω =
eikR

cR

∑
n

∫
jω e

−ik·rn dV (32)

If we discretize the charges, then the currents become jn → qnvn(t) , and

Aω →
eikR

cR

∑
n

∫
qnvn e

i(ωt−k·rn) dt

(33)

≡ eikR

cR

∑
n

qn

∫
ei(ωt−k·rn) drn ,

with vndt→ drn . In the last integral, we implicitly assume that t = t(rn) .
1This is technically the correct definition of a Fourier transform – note that the sign

of the complex exponential is switched in the spatial Fourier resolution for electrostatics:
this is done deliberately so that wave character ωt− k · r is preserved.
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Using Eq. (26) we can determine the Fourier components of the radiation
fields via the manipulation

Bω =

∫
eiωt B dt =

1
c

∫
dt eiωt

(
∂A
∂t
× n

)
= −iω

c
Aω × n , (34)

and likewise for the electric field. Thus, since n = k/k ,

Bω = ik×Aω , Eω = Bω × n =
i
k

(k×Aω)× k . (35)

Observe that in Fourier space, curls map over to cross products. Inserting
the expression in Eq. (33) for the vector potential, we therefore have

Bω = i
eikR

cR

∑
n

qn

∫
ei(ωt−k·rn) k× drn ,

(36)

Eω = − i
k
eikR

cR

∑
n

qn

∫
ei(ωt−k·rn) k×

(
k× drn

)
.

The triple vector product can be expanded in terms of scalar products, and
sometimes this step is useful. Remember that t = t(rn) is implicit.

• The spectral power of radiation to large distances can be obtained as
follows. The Poynting flux is (c/4π)B2 = (c/4π)E2 , which amounts to
the energy per unit time per unit area integrated over the period or 2π in
angular frequency ω . Hence we multiply this by dω/2π to form the Fourier
transform. However, we are expressing it terms of the Fourier components of
Bω and so we including a factor of two for the squaring in frequency space.
Therefore, introducing the area element R2dΩ of a sphere,

dErad
dω dΩ dt

=
c

2π

∣∣Bω

∣∣2R2 . (37)

Again, this evinces the character of the inverse square law, signifying energy
conservation. This form will be used to specify the radiation spectral forms
for different mechanisms below, specifically Rayleigh and Thomson scatter-
ing, and cyclotron radiation.
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3 Radiation Fields at Near Distances

There are many cases where one needs to know the radiation field at near
distances. The situation explored here is where the distance scale R is L&L

Sec. 72comparable to the wavelength λ of the emitted radiation, so that the wave is
no longer quasi-planar. Yet, these scales are still much greater than that (L )
of the charge configuration. For non-relativistic charges, the dipole formula
for the vector potential still applies:

A =
1
cR

∑
n

∫
j (τn, rn) dV → 1

cR

∑
n

qnun →
ḋ
cR

. (38)

The radiation still obeys the wave equation, but the spatial derivatives now
must reflect the curvature of the wavefront. The magnetic field is routinely
computed:

B = ∇×A =
1
c
∇×

(
ḋ
R

)
. (39)

Computing the electric field is a little more involved since it involves a mix-
ture of time and space derivatives that no longer permit the employment of
cross products appropriate for planar waves. Inserting the vector potential
form into the Lorenz gauge condition gives

∇ ·A +
1
c
∂φ
∂t

= 0 ⇒ φ = −∇ ·
(

d
R

)
. (40)

Remember that throughout, the dipole moment must be evaluated at the
retarded time t − R/c common to the charge ensemble. Therefore one can
determine the electric field:

E = −∇φ− 1
c
∂A
∂t

= ∇
[
∇ ·
(

d
R

)]
− 1
c2

∂2

∂t2

(
d
R

)
. (41)

Here the time variations are greatest within the charge ensemble, on the scale
of L , not on the scale of R , and so the time derivative is applied to d only.
Since A obeys the wave equation, then so does ḋ/R and also d/R . This
affords the opportunity to replace the time derivatives with space ones:

E = ∇
[
∇ ·
(

d
R

)]
−∇2

(
d
R

)
= ∇×

[
∇×

(
d
R

)]
, (42)

where we have employed a standard vector identity to render the vector
algebra more compact. The d factors must remain inside the derivatives.
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11. DIPOLE RADIATION

Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

1 Dipole Radiation

The focus for now is on radiation from non-relativistic particles. For a parti-
cle executing simple harmonic oscillations of frequency ω = 2πv/λ , the scale
of its acceleration is given by v̇ ∼ v ω . The ratio of the radiation to velocity
electric (and magnetic) fields can be expressed simply as

|Erad|
|Evel|

∼ R |β̇|
c
∼

(
v
c

)2 2πR
λ

. (1)

Clearly, in the near zone R . λ , the velocity field dominates the radia-
tion field, whereas in a sufficiently far zone R & λ(c/v)2 the radiation field
dominates so that emission can transpire.

Plot: Dipole Radiation Geometry

• The relative time delays for radiation within our system of charges are
on the scale of δtem ∼ rn · n/c . The relative time delays for changes in L&L

Sec. 67the charge distribution are on timescales of δtn ∼ |rn|/|vn| . For the dipole
radiation formalism to be valid, the process of averaging over the charge
distribution must be robust, and so δtem � δtn must hold. Hence, the
wavelength λ = 2πc/ω of the wave must far exceed the scale a of the sys-
tem. This can only happen when

|vn|
c
� 1 : dipole approximation , (2)

i.e. all charges move non-relativistically.

1

L




