
10. RADIATION OF
ELECTROMAGNETIC WAVES

Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

1 Retarded Potentials from Moving Charges

The final thrust of the course is to explore how moving charges generate
electromagnetic radiation, i.e. set light on its way. This requires a return to
Maxwell’s equations in their entirety, and construction of solutions for the
potentials that incorporate the constraints of causality.

1.1 Retarded Potentials

The focus here is to extend the wave equation formalism to incorporate the L&L
Sec. 62influence of charges and currents in producing electromagnetic fields. The

starting point is, as always, Maxwell’s equations, specifically those in inho-
mogeneous form:
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As before, we invoke the Lorentz gauge to eliminate one of the terms. Thus,
the field changes couple to time-varying four-currents. The path to the so-
lution is just as for the vacuum developments for the wave equation, and so
four inhomogeneous wave equations result:
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Here ρ = ρ(t, r) and j = j(t, r) . The protocols for solving for electro-
statics and magnetostatics suggest exploring the Coulomb case first (scalar
potential) for a point charge density at the origin; this serves as the Green’s
function for the problem, with ρ ∝ δ(r)σ(t) . The spherical symmetry of the
source function suggests writing the Laplacian operator in spherical coordi-
nates. Hence, for true isotropy,
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When ρ = 0 , this is just the wave equation for spherical fronts.

It follows that the function rφ solves the wave equation in radial space, i.e.,

rφ → f1(t− r/c) + f2(t+ r/c) , (4)

for any functions fi . The f2 function can be rejected on physical grounds,
namely that the wave must propagate outward from a point. It then follows
that the potential satisfies (for volume elements local to the charge)

φ(t) ∝
∫
ρ(t− r/c)

r
dV . (5)

This has the mathematical character that changes in charge information at
the origin propagate out to radial distances r in time r = ct , in accord
with causality. Now it is straightforward to extend this to distributed charge
populations, by just offsetting the spatial origin. For volumes V ′ populated
by a charge density ρ(r′, t) , the full potential is

φ(r, t) =

∫
ρ
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c

)
d3x′

|r− r′| . (6)

The vector potential analog is obtained by virtually identical considerations,
with the charge density being replaced by the current density. Thus,

A(r, t) =
1
c

∫
j
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r′, t− |r− r′|

c

)
d3x′

|r− r′| . (7)

These two generalized, causal forms for the components of the 4-potential
are referred to as retarded potentials. Disturbances in the 4-current have
their impact on the field realized a distance ct away.

• In the absence of time dependence for jµ , these reduce to the familiar
electrostatic and magnetostatic forms, respectively.
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1.2 The Liénard-Wiechart Retarded Potentials

A key consequence of Maxwell’s equations is that accelerating charges radi- L&L,
Sec. 63ate electromagnetic radiation. Here the formalism needed to explore such

radiation is progressively assembled, centered on the well-known Larmor
formula. We start by considering potentials in a relativistic construct.

Plot: Retarded Potential Geometry

Consider a charge q moving along a trajectory r = r0(t) with velocity R&L,
Sec. 3.1vector u(t) = ṙ0(t) . We can immediately write down the four-current

density jµ to express its charge and current properties:

jµ(xµ) = qc βµ δ (r− r0(t)) , jµ ≡ (ρc, j) , (8)

for xµ = (ct, r) and a four-velocity βµ = (1, u/c) . This trivially integrates
over volume d3r to yield the total charge and current. The scalar and vector
potential can be combined as a four-potential Aµ = (φ, A) and expressed
is integrals over the four-current

Aµ(xµ) =
1
c

∫
d3r′

∫
dt′
jµ(ct′, r′)
|r− r′| δ

(
t′ − t+

|r− r′|
c

)
(9)

at all points in space and time. This is a straightforward adaption of the
combination of Eq. (6) and (7) to express an integration over all past times
t′ as the charge moves along its trajectory. Thus, this defines the cumulative
contribution of causally-connected radiation fields generated at the observa-
tion point r(t) and time t .

• For our single charge, the space integral is trivial, replacing r′ by r0(t
′) .

It is this motion of the charge that renders the t′ integration more involved.

To evaluate the δ function, we introduce a change of variables that sim-
plifies its argument. To this end, we define

R(t′) = r− r0(t
′) , R(t′) =

∣∣R(t′)
∣∣ , n =

R
R

. (10)

Here R(t′) is the look-back position vector, possessing a unit vector n, and
t′ = t − R(t′)/c the look-back or retarded time to past epochs of the
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Retarded Potential Geometry

• The world line geometry of a moving charge used for calculating its 
radiation field at distance R in direction n using retarded potentials.

• Fig. 3.1 of Rybicki & Lightman: Radiative Processes in Astrophysics (1979). 

Part icle posit ion
att

Path of
part icle

Part icle posit ion

Figure 3.1 Geometry for calculation of tlrc radiotion fiea ot R fiomposition of tlre radiatkg particle at tlte retarded timc.

frgwv 3.2 Graphical demonstration of tlre I / R accelemtion fuW Charged
particle mookg at wiform oelocity k positfue x dircaion is stopped at x: 0 ond
t: 0.



particle’s motion that contribute to the potentials at the present xµ . The
solution of the δ function defines the retarded time tret :

η (tret) ≡ c(tret − t) +R (tret) = 0 . (11)

This forges causal connection to all past history of the particle along its
trajectory. By changing variables to t′′ = c η(t′) , the evaluation of the δ
function introduces a factor of c/η′(tret) , with the derivative being given by

η′(tret) = c+
∂R
∂t′

∣∣∣∣
t′=tret

= c− n · u(tret) . (12)

At this point we introduce an aberration factor

κ(tret) = 1− n(tret).β(tret) , β =
u
c

. (13)

The final evaluation of the time integral in Eq. (9) yields

Aµ(xµ) =

[
q βµ

κR

]
ret

, βµ =
uµ

γ
=
(

1,
u
c

)
. (14)

These are the Liénard-Wiechart retarded potentials, with the subscript
ret denoting evaluation of all quantities at the retarded time that is a solution
of Eq. (11), to accommodate relativistic causality.

• The aberration factor κ dictates a concentration of the potentials in a
narrow cone about the particle velocity, what is called a relativistic beam-
ing effect, which is coupled to Doppler boosting.

• The appearance of the retarded time is of central importance: it makes
it possible for the particle to radiate: instead of the fields possessing 1/R2

dependence, evaluation of potentials at tret drives a 1/R dependence to the
radiation field. This will become evident shortly.
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1.3 Fourier Representation of Retarded Potentials

The definition of the Fourier representation of the potentials and fields of
moving charges, including the inherent retardation, can be derived by adap- L&L,

Sec. 64tation of the corresponding analysis of the electrostatic Coulomb field in
Chapter 8. Here we have a wave equation as the starting point:

∇2φ− 1
c2
∂2φ
∂t2

= −4πq δ3(r− v t) ≡ −4πq

∫
eik·(r−v t)

d3k
(2π)3

, (15)

where the charge distribution is ρ = q δ3(r−v t) for a charge q moving with
velocity v. Again the delta function Fourier representation identity has been
invoked on the right. Hereafter, we will employ v = βc . Writing

φ =

∫ ∞
−∞

eik·r φk
d3k

(2π)3
⇒ ∇2φ =

∫ ∞
−∞

(ik)2 eik·r φk
d3k

(2π)3
(16)

leads to the identification of an inhomogeneous ODE in the time variable for
φk and its routine solution:

1
c2
∂2φk

∂t2
+ k2 φk = −4πq e−ik·β ct ⇒ φk = 4πq

e−ik·β ct

k2 − (k · β)2
. (17)

This obviously reduces to the familiar Coulomb form when v → 0 . One
can then quickly identify that for a wavevector k, the wave frequency of a
fluctuating field is just ω = k ·v . Derivation of the Fourier amplitude for the
vector potential is similar, replacing φ→ A and ρ→ j/c = q β δ3(r− v t) ,
resulting in

Ak = 4πq
β e−ik·β ct

k2 − (k · β)2
. (18)

The electric and magnetic field Fourier amplitudes are routinely obtained:

Ek = −ikφk + i(k · β) Ak = 4πi q
(k · β)β − k
k2 − (k · β)2

e−ik·β ct ,

(19)

Bk = −ik×Ak = 4πi q
k× β

k2 − (k · β)2
e−ik·β ct .

These are derived without reference to whether β is constant or not.
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1.4 Electromagnetic Fields from Accelerating Charges

The calculation of the fields resulting from the Liénard-Wiechart potentials in R & L,
Sec. 3.2Eq. (14) is a routine but lengthy exercise in vector calculus: refer to Jackson

(1975), Section 14.1. The electric field can be divided into two contributions,
a velocity field Evel and a radiation field Erad (or acceleration field):

Evel = q

[
(n− β) (1− β2)

κ3R2

]
ret

,

(20)

Erad =
q
c

[
n
κ3R

×
{

(n− β)× β̇
}]

ret

.

The total electric and magnetic fields spawned by the moving charge are

E(r, t) = Evel + Erad , B(r, t) =
[
n× E(r, t)

]
ret

. (21)

The relativistic influences inherent in these formulae include:

• an aberration factor (n− β)/κ , present in both fields;

• length contraction factors
√

1− β2/κ , two in Evel and one in Erad ;

• and a time dilation factor γ/κ in Erad due to the time derivative.

These appear due to the time and space differentiation operations.

Plot: Geometry from Fig. 3.1 of R&L.

• The velocity field Evel is the only contribution in the absence of accel-
eration. It represents a transient electromagnetic pulse as the charge whisks
by, but since ∫

|Evel|2R2 dΩ → 0 as R → ∞ , (22)

it conveys no electromagnetic energy to infinity. It is a relativistic general-
ization of Coulomb’s law, collapsing to the familiar result when β � 1 .

• The second term, the radiation field, is the result of the acceleration of
the charge. Since it falls off as 1/R , it transmits a finite value of electro-
magnetic energy to infinity, as radiation propagated in the direction n with
fields Erad and Brad = n× Erad , both perpendicular to n.
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• As a gedanken experiment, consider a charge in linear motion rapidly
decelerating on a timescale ∆t centered on time t = 0 and stopping point
x = 0 . The fields are schematically illustrated in Fig. 3.2 of R&L.

Plot: Electric Field of a Decelerating Charge

∗ The near-field zone, R . ct , (for t > 0 ) is described by the domi-
nant 1/R2 term from the stopped charge, i.e. a Coulomb field Evel for the
specific case of β = 0 .

∗ The far-field zone, R & ct , is also a Coulomb field, but correspond-
ing to the velocity field Evel for the β > 0 charge prior to deceleration. It
is centered on the advance point x = ct , and possesses the characteristic
disk-like compression of the field lines perpendicular to β .

• The discontinuity or interface separating these two regions travels at
speed c , and represents an electromagnetic wave. The thickness of this
interface is c∆t . Its cross section is an annular ring of radius R ∼ ct ,
threaded by bunched field lines that yield total conservation of electric flux.

∗ Accordingly, the field within this interface must scale as |Erad| ∼ 1/R ,
so that E/M energy is thereby transported to infinity as Poynting flux. In
reality, this energy is eventually absorbed by other charges in its path.

∗ This idealized, central charge case obviously can be adapted to charge
ensembles, for which centrality goes away, and the radiation wave is no longer
isotropic. Such is true also for gradual acceleration/deceleration of a single
charge, since there are two special directions provided by β and β̇ .
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Electric Field of a Decelerating Charge

• Schematic of the 1/R radiation field of a decelerating charge.  The 
charge impulsively decelerates from constant velocity v to zero speed 
(i.e. becomes stationary) at time t=0 at the origin. 

• Fig. 3.2 of Rybicki & Lightman: Radiative Processes in Astrophysics (1979). 
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Figure 3.1 Geometry for calculation of tlrc radiotion fiea ot R fiomposition of tlre radiatkg particle at tlte retarded timc.

frgwv 3.2 Graphical demonstration of tlre I / R accelemtion fuW Charged
particle mookg at wiform oelocity k positfue x dircaion is stopped at x: 0 ond
t: 0.




