
Eliminating the explicit time dependence gives

E2
y

E2
1

+
E2
z

E2
2

= 1 . (31)

Therefore, as time progresses, the electric vector rotates in the plane orthog-
onal to the direction of propagation, with its tip tracing out an ellipse in the
(y, z) -plane. This is the most general form of a monochromatic wave, and it
is said to be elliptically polarized.

Plot: The Polarization Ellipse

• If either of E1 or E2 is zero, then the wave is described by just a
single sinusoid, and is said to be linearly polarized. This is the “purest”
polarization configuration for electromagnetic waves, and can be generated
by an alternating current in a wire: the electric field vector is confined to a
plane that contains the k vector also.

• In the special case that E1 = E2 6= 0 , then the ellipse reduces to a circle
and the wave is said to be circularly polarized. These are a superposition
of two linearly polarized waves of equal electric amplitude but orthogonal
polarization (i.e., E-field vector direction), and a single phase offset.

∗ Elliptically polarized waves are a superposition of two linearly polarized
waves of unequal amplitude, orthogonal polarization, and a phase offset.

Now define a four-dimensional wavevector that satisfies a massless condition:

kα =
(
ω
c
, k
)
⇒ kαkα = 0 . (32)

The argument of the complex exponential in the Fourier transform for the
vector potential is the negative of

kαx
α = ωt− k · r . (33)

This is necessarily a Lorentz invariant (scalar), and so it follows that kα

must be a true 4-vector. Accordingly, the Lorentz transformation properties
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The Polarization Ellipse

• The elliptical path in the (x,y) plane of the electric field vector 
E for an electromagnetic wave propagating in the z-direction. 

• From Fig. 2.14 of A. Pal, PhD Thesis, Swansea Univ. (2013). 

2.5 Antenna key parameters

the greater the power loss. This power loss due to polarization mismatch will

reduce the overall system efficiency which in turn will degrade the performance

of the system. If the antenna polarization is matched (ψ=0◦), the PLF will be

unity and the antenna will receive maximum power from the incoming waves.

x

y

E

z Ex

Ey

Ey(t)

Ex(t)

O

A
B

Figure 2.14: Polarization ellipse at z=0

2.5.10 Axial ratio

At a fixed value of z the electric field vector E rotates as a function of time and

the tip of the vector describing an ellipse, called the Polarization Ellipse[Kraus,

2001].

At a fixed position,z=0, the Equation 2.26 can be written as

"Ex(t) = Excos (ωt) (2.36)

From this relation we have

cos(ωt) =
Ex(t)

Ex
and sin(ωt) =

√

1−
(
Ex(t)

Ex

)2

(2.37)

30



are easily specified. Because of the massless condition relating space and
time components, we need only focus on the time component mapping:

k0 = γ
(
k′0 − βk′1

)
. (34)

If the direction between the propagation vector in the K ′ frame and the
boost β is θ′ , then since k′1/k

′
0 → cos θ′ , the perceived frequency of the

wave in the K frame is

ω0 = γ(1− β cos θ′)ω′ . (35)

This change in frequency is known as the Doppler effect for light, and is
an increase (decrease) according to the K ′ frame approaching (receding).

2 Polarization Formalism: Stokes Parameters

The preceding examples explored fully-polarized light, where there is a coher- L&L
Sec. 50ent correlation between two linear polarization states superposed to produce

an elliptically polarized wave. In general, such a perfect configuration often
does not exist, and the mixes of light waves are somewhat incoherent, which
means they are not monochromatic, and possess a spread of frequencies ω ,
wavenumbers k and/or phases φ . We therefore consider an electric field
vector function

E = E0(t) e
i(k·r−ωt) ≈ (E1 + iE2) exp

{
i(k · r− [ω + ∆ω] t− α)

}
, (36)

and suppress the explicit display of ∆k and ∆φ information. Experimen-
tally, we do not measure the electric field of light waves, just the power
it transmits into a “detector” or medium. Therefore, we are interested in
quadratic quantities involving the electric field amplitude. The magnetic field
is not specifically considered in the subsequent presentation, though it is
easily obtained.

In what follows, it is presumed that k ∝ x̂ , i.e. the wave propagates in the
x -direction, and the polarization information is contained in the (y, z) -plane.
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2.1 The Polarization 2-Tensor

For the remainder of this Section, we will concern ourselves with the time
portion of the electric field profile. Measurements cannot resolve the time
variations, so one needs only to consider time averages 〈〉t on scales much
greater than 2π/ω . In forming quadratic scalars involving E(t) , combina-
tions not involving complex conjugates, i.e., for i, j = 1, 2 ,

EiEj ∝ E0iE0je
−2iωt , E∗iE

∗
j ∝ E∗0iE

∗
0je

2iωt , (37)

average to zero over long times. Therefore we are only interested in prod-
ucts that mix coefficients of the spatial portion of the field and complex
conjugates. We define the intensity tensor for a light wave, a 2-tensor, as

Iij = c
〈
EiE∗j

〉
t

(38)

for
E(r, t) ≡ E0(t) e

i(k·r−ωt) =
(
E1ŷ + E2ẑ

)
e−iωt . (39)

Thus, the Ei(r, t) are coefficients that contain the space information of the
wave, the slowly varying time information, and the electric field vector in-
formation. With the time-averaging process, the spatial dependence factors
out. The trace of this 2-tensor is

I ≡ Ijj = c
〈
E1E∗1 + E2E∗2

〉
t

= c
〈
E0(t) E∗0(t)

〉
t

, (40)

and is termed the intensity of the light wave. It has units of energy per unit
area per unit time (contrasting the L&L definition of energy/volume).

The intensity is the measure of how much light we have. With a polaroid
detector, we are interested in retaining the polarization information. The
intensity tensor is then scaled by its trace, to form the polarization tensor:

Pij =
Iij
I

=

〈
EiE∗j

〉
t〈

E1E∗1 + E2E∗2
〉
t

with Pij = P ∗ji . (41)

It is a dimensionless 2-tensor that is obviously Hermitian, and has a trace
of unity. Consequently, the diagonal components are real and sum to unity.
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• For completely linearly-polarized light, clearly E0(t) is independent of
time, and so the time-averaging process is immaterial. One can then write

Iij = I Pij = EiEj , (42)

i.e. a product of two constant vectors. Hence, as Pij is diagonalizable as a
matrix, i.e., can be brought into diagonal form via a rotation in the (y, z)
plane, in this special case it must have zero determinant (one Ei is zero):∣∣Pij∣∣ = P11P22 − P12P21 ≡ PyyPzz − PyzP ∗yz = 0 . (43)

Here the correspondence 1 → y , 2 → z is highlighted. The tensor compo-
nents are therefore restricted by this additional equation.

For natural or completely unpolarized light, all directions in the (y, z) -plane
are equivalent. The polarization tensor must then be diagonal so that

Pij =
δij
2

⇒
∣∣Pij∣∣ =

1
4

. (44)

These two highlight cases establish the extremes for the physical range of
allowable determinants for the polarization tensor: 0 ≤ |Pij| ≤ 1/4 . This
leads to the definition of the total degree of polarization P via

P =
√

1− 4
∣∣Pij∣∣ , 0 ≤ P ≤ 1 . (45)

This is often also quoted in percentages.

For more general circumstances, the polarization tensor can be conveniently
deconstructed into essential elements by isolating its symmetric and anti-
symmetric portions. For a Hermitian tensor this is simply done:

Pij =
1
2

(
Pij + Pji

)
︸ ︷︷ ︸+

1
2

(
Pij − Pji

)
︸ ︷︷ ︸

(46)

Sij − i
2
εij A

This isolates the symmetric part Sij , which is purely real, and the anti-
symmetric part, which is proportional to real A and is imaginary. Here

εij =

(
0 1

−1 0

)
(47)

is the unit anti-symmetric tensor of rank 2.
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• For unpolarized light, since Pij is diagonal, then A = 0 . For linearly-
polarized light, while Pij is not necessarily diagonal, one has the freedom to
choose E0 to be real, for which A = 0 also. Then, again Pij is real and
diagonal. For circularly-polarized light, the magnitudes of E1 and E2 have
to be identical, so that E2 = iE1 . It then follows that

Sij = δij and A = ±1 ⇒ Pij =
δij
2
∓ i

2
εij . (48)

The value of A is referred to as the helicity of the wave, and it is right-
hand polarized for A = 1 an left-hand polarized for A = −1 .

The elliptical polarization character of a wave will, in general, establish
elliptic axes for the electric field vector evolution that do not coincide with
the coordinate axis an observer or measurement will adopt. Accordingly, a
suitable transformation is needed. Let the wave’s elliptical axes be along
unit vectors ny and nz that are orthogonal to each other, i.e. ny · nz = 0 .
These define the directions of the electric field vectors of the two constituent
linear polarization states that superpose to generate the complete wave. They
can be terms the principal axes of the elliptical polarization state.

The polarization tensors for each of these linear polarizations have A = 0
and possess just the symmetric part:

Sij = ny,i ny,j or Sij = nz,i nz,j . (49)

These each have only one element that is non-zero and are clearly diagonal
tensors with zero determinant, corresponding to P = 1 degree of polariza-
tion. The linear superposition of these for the purely elliptical polarization
state therefore has a diagonal symmetric tensor component with

Sij = λy ny,i ny,j + λz nz,i nz,j →
(
λy 0

0 λz

)
, λy + λz = 1 . (50)

The determinant of Sij is just λyλz , and this can be expressed in terms of
Plin , the degree of polarization from a superposition of purely linear polar-
ization modes, as a opposed to a mix including circular polarization. Thus
the determinant is λyλz = (1−P 2

lin)/4 , and can be solved for λy and λz as

λy =
1 + Plin

2
, λz =

1− Plin

2
. (51)
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The Polarization Ellipse

• The elliptical path in the (x,y) plane of the electric field vector 
E for an electromagnetic wave propagating in the z-direction. 

• From Fig. 2.14 of A. Pal, PhD Thesis, Swansea Univ. (2013). 

2.5 Antenna key parameters

the greater the power loss. This power loss due to polarization mismatch will

reduce the overall system efficiency which in turn will degrade the performance

of the system. If the antenna polarization is matched (ψ=0◦), the PLF will be

unity and the antenna will receive maximum power from the incoming waves.
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Figure 2.14: Polarization ellipse at z=0

2.5.10 Axial ratio

At a fixed value of z the electric field vector E rotates as a function of time and

the tip of the vector describing an ellipse, called the Polarization Ellipse[Kraus,

2001].

At a fixed position,z=0, the Equation 2.26 can be written as

"Ex(t) = Excos (ωt) (2.36)

From this relation we have

cos(ωt) =
Ex(t)

Ex
and sin(ωt) =

√

1−
(
Ex(t)

Ex

)2

(2.37)
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One has the freedom to rotate the principal axes to render λy > λz ( y is
the semi-major axis of the polarization ellipse). Then

Sij = SP ≡
1
2

(
1 + Plin 0

0 1− Plin

)
(52)

is the form for the symmetric part of the polarization tensor when the co-
ordinate axes are aligned with the principal axes of the ellipse. General
coordinate axes are not so aligned, and can be obtained via a simple rotation
through polarization angle χ (L&L use φ ) in the y, z plane. Thus

Sij =

(
cosχ sinχ

− sinχ cosχ

)T
SP

(
cosχ sinχ

− sinχ cosχ

)
(53)

=
1
2

(
1 + Plin cos 2χ Plin sin 2χ

Plin sin 2χ 1− Plin cos 2χ

)
.

This is the general form of the symmetric portion of the polarization tensor,
and is specified in terms of two radiation parameters: Plin and χ .

Plot: The Polarization Ellipse Revisited

Note the rotational period of π in the χ variable. When we add the anti-
symmetric portion, we introduce a third parameter, A , the degree of circular
polarization. This completes the specification of a non-monochromatic wave.

2.2 Stokes Parameters

These three radiation parameters are commonly expressed via the following
well-known choice:

Q = I Plin cos 2χ , U = I Plin sin 2χ , V = I A . (54)

These are known as Stokes parameters1; Q and U specify the linear
polarization magnitude and orientation, and V expresses the circularity of
the polarization. Clearly Q/I , U/I and V/I all range between −1 and 1 .

1Obtained by George Gabriel Stokes in 1852.
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The distinct advantage of them is that they are additive for radiation from
different origins or zones of interest [Draw]. The polarization tensor becomes

Pij =
1
2I

(
I +Q U − iV
U + iV I −Q

)
, (55)

and its determinant is∣∣Pij∣∣ =
1

4I2

(
I2 −Q2 − U2 − V 2

)
=

1
4

(
1− P 2

)
. (56)

From this one simply determines that the total polarization degree is

P =

√
Q2 + U2 + V 2

I
. (57)

Therefore, P is clearly not additive when summing over different regions
of interest or radiation fields. Furthermore, we discern that all three Stokes
parameters are bounded by IP , so that one can also define a second polar-
ization angle ψ that is often convenient: A = P sin 2ψ . Substitution into
Eq. (57) then obtains

Plin ≡
√
Q2 + U2

I
= P cos 2ψ . (58)

It therefore follows that the three Stokes parameters can be specified in terms
of the polarization degree P and angles χ and ψ :

Q
I

= P cos 2χ cos 2ψ ,
U
I

= P sin 2χ cos 2ψ ,
V
I

= P sin 2ψ . (59)

The polarization state can be represented on a 2D surface construction known
as the Poincaré sphere, where χ, ψ define spherical polar coordinates.

Plot: Polarization: the Poincaré sphere

• Note that while these developments leveraged the elliptical polarization
state, they can apply to any non-monochromatic radiation configuration.
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Polarization: Poincaré Sphere

• Diagram from Wikimedia Commons. 




