
9. ELECTROMAGNETIC WAVES

Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

1 The Electromagnetic Wave Equation

In a localized vacuum, the four-current is jµ = 0 , yet Maxwell’s equations
admit a solution. They take the form L&L

Sec. 46

∇ · E = 0 , ∇× E = −1
c
∂B
∂t

[Faraday] ,

(1)

∇ ·B = 0 , ∇×B =
1
c
∂E
∂t

[Ampere] .

If the fields are presumed time-independent, then our studies of electrostatics
and magnetostatics automatically imply the trivial solution E = 0 = B .
Accordingly, non-trivial solutions must be time-dependent, and in fact exist.

For convenience, the developments are made using the vector potential. Us-
ing its definition and inserting it into Faraday’s law for the ∂B/∂t term,

B = ∇×A ⇒ E = −1
c
∂A
∂t
−∇φ . (2)

The scalar potential is eliminated in L&L immediately through a gauge
choice, but doesn’t really need to be yet. These two equations can be in-
serted into Ampere’s law to yield a second-order PDE for the vector and
scalar potentials:

∇×
(
∇×A

)
≡ ∇

(
∇ ·A

)
−∇2A = − 1

c2
∂2A
∂t2
−∇

(
1
c
∂φ
∂t

)
. (3)
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This rearranges to

∇2A− 1
c2
∂2A
∂t2

= ∇
(
∇ ·A +

1
c
∂φ
∂t

)
. (4)

L&L choose the Coulomb gauge ∇·A = 0 together with the trivial potential
φ = 0 to render the RHS equal to zero. However it suffices to adopt the
covariant Lorenz gauge condition

∂Aµ

∂xµ
=

1
c
∂φ
∂t

+∇ ·A = 0 (5)

The result is d’Alembert’s wave equation for the vector potential:

∇2A− 1
c2
∂2A
∂t2

= 0 . (6)

In 3D this can admit plane wave solutions.

• The wave equation can also admit non-planar solutions. For example, a
dipole oscillating in a linear direction, or spinning/precessing in an electric
field creates an anisotropic 3D wave that asymptotically at large distances
assumes the shape of a spherical front.

• The wave equation can also be derived quickly via covariant formal-
ism. The second pair of Maxwell field equations can be expressed using the
covariant form of the electromagnetic field tensor:

0 =
∂F µν

∂xν
=

∂
∂xν

(
∂Aν

∂xµ
− ∂Aµ

∂xν

)
=

∂
∂xµ�

�
�∂Aν

∂xν
− ∂2Aµ

∂xν∂xν
. (7)

The cancelled term is chosen to be zero via the Lorenz gauge choice in Eq. (5),
which is manifestly covariant. The result is simply the covariant form of the
wave equations, four in all:

∂2Aµ

∂xν∂xν
= 0 . (8)

The potentials are not uniquely determined. If we perform a further gauge
transformation A→ A +∇f , φ→ φ− 1/c ∂f/∂t , then f has to obey the
wave equation, but then the new four-potential is a viable solution. One can
choose ∂f/∂t = cφ to eliminate the scalar potential.
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1.1 Plane Waves

The planar solution of Eq. (6) is of particular interest, since it is our standard L&L
Sec. 47elemental description for light. d’Alembert’s PDE is then routinely solved.

This case corresponds to each component of the vector potential depending
only on one coordinate direction, which we presume to be x . Then

∂2Ai

∂t2
− c2 ∂

2Ai

∂x2
= 0 . (9)

This “factorizes” as(
∂
∂t
− c ∂

∂x

)(
∂
∂t

+ c
∂
∂x

)
Ai = 0 , (10)

suggest the transformation to normal coordinates ξ = t − x/c and η =
t+ x/c that define the characteristics of the PDE. Then

∂
∂ξ

=
1
2

(
∂
∂t
− c ∂

∂x

)
,

∂
∂η

=
1
2

(
∂
∂t

+ c
∂
∂x

)
, (11)

so that the normal form for the wave equation is

∂2Ai

∂ξ∂η
= 0 ⇒ Ai = f1(ξ) + f2(η) . (12)

This is a solution of counter-propagating waves, both at speed c .

Now let us ascertain the vector properties of the waves associated with
the electromagnetic fields. For propagation along the x -direction, if the
Coulomb gauge condition is invoked, ∇ ·A = 0 , then since Ai = Ai(x) , it
collapses to

∂Ax
∂x

= 0 ⇒ Ax(x) = Ax(t) . (13)

If we also set φ = 0 , WLOG, insertion into the wave equation then gives

∂2Ax
∂2t

= 0 ⇒ Ax(x) = α+βt ⇒ E = −1
c
∂A
∂t

= −β
c
x̂ . (14)
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A constant longitudinal electric field is irrelevant to the wave, so it can be set
to zero. We can then set Ax = 0 (i.e., α = 0 = β ). Therefore we can choose
the vector potential to have just components Ay and Az perpendicular to
the direction of propagation. We will consider just the case of propagation
along the positive x -axis, and set

Ay = Ay(t− x/c) , Az = Az(t− x/c) (15)

All field functions will depend only on the offset time τ = t−x/c . A Fourier
decomposition of the waveform can be posited:

A(x, t) =

∫
Ak(k, ω) ei(k·r−ωt)

d4k
(2π)4

. (16)

Only the components Ay, Az in the transverse directions, the (y, z) -plane,
are non-zero, and clearly k = kn , where the unit vector in the x -direction
is denoted by n. It is immediately obvious that

k ≡ |k| =
ω
c

(17)

in order for this Fourier decomposition to satisfy the wave equation solution.
Thus, Ak(k, ω) ∝ δ(k − ω/c) .

The time-dependent electric field vector is simply specified, and because A
possesses only components transverse to n, so also does E:

E(x, t) = −1
c
∂A
∂t

= i

∫
ω
c

Ak(k, ω) ei(k·r−ωt)
d4k

(2π)4
. (18)

Prescribing the wave magnetic field is only slightly more involved. The
Fourier expression yields the identity ( ∂A/∂y = ∂A/∂z )

n× ∂A
∂t

= −cn× ∂A
∂x
≡ −c∇×A = −cB , (19)

remembering that only the transverse components of A are non-zero. Re-
membering the definition of E for our wave [see Eq. (18)], this reduces to

B = n× E = i

∫
ω
c

{
n×Ak(k, ω)

}
ei(k·r−ωt)

d4k
(2π)4

. (20)

Therefore, B is perpendicular to both n and E. Moreover, it follows from
this vector triad construction that |B| = |E| .
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• We have therefore finally established what we have alluded to for quite a
while now: electromagnetic waves are transverse phenomena, with both field
components orthogonal to the direction of propagation, and to each other, at
least at all points in time and space. In addition, the two fields are of equal
magnitude, as necessitated by light being massless in the theory of relativity.

• These idealized properties, together with the clean dispersion relation
ω = kc , are relinquished in material media, where charges and currents are
finite, and the wave equation is modified, and disturbances propagate at
speeds less than c ; moreover, they are not exactly transverse!

The Poynting vector or energy flux of the plane wave can now be specified:

S =
c

4π
E×B =

c
4π

E×
(
n× E

)
=

c
4π

{(
E · E

)
n−����(

n · E
)

E
}
, (21)

so that it follows that

S =
c

4π
E2 n =

c
4π

B2 n . (22)

Accordingly, the energy of an electromagnetic wave flows along k, which is
called its wavevector. The energy density Uem of the wave is related to the
Poynting vector:

Uem =
E2 +B2

8π
=

E2

4π
⇒ S = cUem n , (23)

so that |S| = Uemc , and the momentum per unit volume is S/c2 . The flux
of momentum is determined also from the energy-momentum tensor, and
since our wave travels along the x -direction, it is just T xx = −σxx = Uem .

• For a Lorentz boost between observers viewing the wave, say in the K
and K ′ frames, we have determined [in homework] that

Uem = γ2
(
U ′em + 2β

S ′x
c

+ β2σ′xx

)
. (24)

For a wave propagation angle θ′ relative to the direction of the boost, the
result from the energy-momentum tensor is

Uem = γ2U ′em
(
1 + β cos θ′

)2
. (25)

Here one Doppler factor γ(1 + β cos θ′) is associated with the blueshift of
the light, and the other with length contraction of the volume, or, equiva-
lently, one for each power of the electric/magnetic fields.
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1.2 Monochromatic Plane Waves

The special case where the wavenumber and frequency of the vector poten-
tial Fourier transform are infinitely narrow, i.e. a delta function, defines a L&L

Sec. 48monochromatic wave. Thus

A(x, t) =

∫
Ak(k, ω) ei(k·r−ωt)

d4k
(2π)4

→ A0 e
i(k·r−ωt) . (26)

As before, the non-dispersive restriction gives a phase speed ω/k of the wave
of c , and the wavenumber and the wavelength λ are related by

λ =
2π
k

, k = |k| =
ω
c

. (27)

In this case, the electric field (time derivative) and the magnetic field (spatial
gradient) are simply expressed:

E = ikA , B = ik×A . (28)

In general, we can work algebraically with complex quantities, however, when
it is time to determine real fields, we set

E = Re
(
E0 e

i(k·r−ωt)
)

, B = Re
(
B0 e

i(k·r−ωt)
)

(29)

Here E0 = ikA0 and B0 = ik × A0 . The signature character of the
monochromatic wave is that both fields vary purely sinusoidally and with
correlated phases. To determine the real part, we write E0 = (E1+iE2) e

−iα ,
where E1 and E2 are real vectors. If we demand that (E1 + iE2)

2 be a real
quantity, then E1 · E2 = 0 , i.e. they are perpendicular. Then, we can set
E1 = E1ŷ and E2 = E2ẑ . The real components of the electric field are

Ey = E1 cos
(
ωt− k · r + α

)
, Ez = ±E2 sin

(
ωt− k · r + α

)
. (30)

The choice of sign for the Ez component determines the sense of this compo-
nent relative to the Ey component, and thus defines the positive or negative
helicity of the wave. If the wave is generated by a charge gyrating in a
magnetic field, then the helicity is determined by the sign of the charge.
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Eliminating the explicit time dependence gives

E2
y

E2
1

+
E2
z

E2
2

= 1 . (31)

Therefore, as time progresses, the electric vector rotates in the plane orthog-
onal to the direction of propagation, with its tip tracing out an ellipse in the
(y, z) -plane. This is the most general form of a monochromatic wave, and it
is said to be elliptically polarized.

Plot: The Polarization Ellipse

• If either of E1 or E2 is zero, then the wave is described by just a
single sinusoid, and is said to be linearly polarized. This is the “purest”
polarization configuration for electromagnetic waves, and can be generated
by an alternating current in a wire: the electric field vector is confined to a
plane that contains the k vector also.

• In the special case that E1 = E2 6= 0 , then the ellipse reduces to a circle
and the wave is said to be circularly polarized. These are a superposition
of two linearly polarized waves of equal electric amplitude but orthogonal
polarization (i.e., E-field vector direction), and a single phase offset.

∗ Elliptically polarized waves are a superposition of two linearly polarized
waves of unequal amplitude, orthogonal polarization, and a phase offset.
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The Polarization Ellipse

• The elliptical path in the (x,y) plane of the electric field vector 
E for an electromagnetic wave propagating in the z-direction. 

• From Fig. 2.14 of A. Pal, PhD Thesis, Swansea Univ. (2013). 

2.5 Antenna key parameters

the greater the power loss. This power loss due to polarization mismatch will

reduce the overall system efficiency which in turn will degrade the performance

of the system. If the antenna polarization is matched (ψ=0◦), the PLF will be

unity and the antenna will receive maximum power from the incoming waves.
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Figure 2.14: Polarization ellipse at z=0

2.5.10 Axial ratio

At a fixed value of z the electric field vector E rotates as a function of time and

the tip of the vector describing an ellipse, called the Polarization Ellipse[Kraus,

2001].

At a fixed position,z=0, the Equation 2.26 can be written as

"Ex(t) = Excos (ωt) (2.36)

From this relation we have

cos(ωt) =
Ex(t)

Ex
and sin(ωt) =

√

1−
(
Ex(t)

Ex

)2

(2.37)
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