
4 Magnetic Field Configurations

Now we extend the static field considerations to include magnetic fields.
These require currents. The considerations will be restricted to time-averaged
cases, where charge motions are relatively ordered, and the contributions
from time-varying electric fields are small. This means that we are not con-
sidering electromagnetic waves, yet we will very soon.

4.1 Biot-Savart Law

The two Maxwell’s equations that control the magnetic field are L&L
Sec. 43

∇ ·B = 0 , ∇×B =
1
c
∂E
∂t

+
4π
c

j . (52)

Over long time periods, these may be averaged using our standard protocols,
and the varying electric field term becomes insignificant:〈

∂E
∂t

〉
t

≡ 1
T

∫ T

0

∂E
∂t

dt → 0 ; (53)

electric fields are minuscule on large timescales. Again we are neglecting the
possibility of electromagnetic waves. The time-averaged Maxwell equations
become

∇ · 〈B〉t = 0 , ∇× 〈B〉t =
4π
c
〈j〉t . (54)

These will be manipulated. Hereafter, the time-averaging notation will be
dropped, though it will be implicitly assumed in the ensuing forms.

Introducing the time-averaged vector potential, then B → ∇ × A , and
Gauss’ law is trivial. Ampere’s circuital law assumes the interesting form:

∇×
(
∇×A

)
= ∇

(
∇ ·A

)
−∇2A =

4π
c

j . (55)

The first term on the left can be eliminated by adopting the Coulomb gauge
with ∇ ·A = 0 . Then

∇2A = −4π
c

j . (56)
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This is satisfyingly simple in that it is a vector analog of Poisson’s equation,
with the scalar potential φ being replaced by the vector potential A, and
the charge density ρ being replaced by the current density j/c . One can
then integrate the Laplacian as was done for Coulomb’s law, and derive

A =
1
c

∫
j(r′)
|r− r′| d

3r′ ≡ 1
c

∑
n

qnvn
|r− xn|

(57)

for the time-averaged vector potential in terms of the time-averaged current.
Here r is the position vector from any point within the integration volume to
where the field is measured. The discrete charge alternative form looks just
like the ensemble form for Coulomb’s law, but now with charge qn replaced
by current qnvn .

The time-averaged magnetic field can now be derived and simplified:

B = ∇r ×
(

1
c

∫
j(r′)
|r− r′| d

3r′
)

(58)

=
1
c

∫ {(
∇r

1
|r− r′|

)
× j(r′) +

1
|r− r′|�������

(
∇r × j(r′)

) 0
}
d3r′ .

Here we have used a standard vector identity for the curl of the product of a
scalar and a vector. The curl operates only on the position vector r (hence
the subscript) out to where the field is measured, and so ∇r × j(r′) = 0 .
Therefore, the time-averaged magnetic field satisfies

B =
1
c

∫
j(r′)× (r− r′)
|r− r′|3 d3r′ , (59)

since ∇r(1/|r − r′|) = −(r − r′)/|r − r′|3 . Carefully note the order of the
cross product. Hereafter the explicit use of subscript r on the ∇ operator
is dropped. This result, which bears considerable semblance to the magnetic
field of a moving charge, is known as the Biot-Savart Law, and only applies
in a time-averaged sense. Such steady configurations are commonly realized
in current systems, for example coils and current loops.

• For magnetostatic configurations, ∂ρ/∂t = 0⇒ ∇ · j = 0 , so that j can
be expressed as a curl. Eq. (54) gives j = (c/4π)∇×B as the inversion of
the Biot-Savart law. This should be obvious when forming ∇ × B as the
integrand is then proportional to ∇×∇(1/|r− r′|) = 4πδ3(r− r′) , and the
evaluation of the integral is trivial.
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4.2 Magnetic Moments

The Biot-Savart Law is expressed via a continuum form for the current vector. L&L
Sec. 44In this Section we explore the discrete form in a search for the magnetic

analog of the electric dipole moment formula. Thus a far-field expansion is
de rigueur, and we perform a Taylor series expansion.

A =
1
c

∑
n

qnvn
|r− xn|

≈ 1
c |r|

∑
n

qnvn −
1
c

∑
n

qnvn

{
xn · ∇

(
1
r

)}
. (60)

The first term is proportional to the time derivative of the electric dipole
moment: ∑

n

qnvn =
d
dt

(∑
n

qnxn

)
= 〈ḋ〉t → 0 . (61)

In general, ḋ 6= 0 . However, here we are considering long-term time aver-
ages, and so the integrated derivative tends to zero, as before. Thus, only
the second term contributes:

A ≈ 1
cr3
∑
n

qnvn
(
xn · r

)
. (62)

Since vn = dxn/dt , this can be re-expressed using the chain rule of differen-
tiation to symmetrize the roles of xn and its derivative

1
2
������������d
dt

{∑
n

qn
(
xn · r

)
xn

}
=

∑
n

qnvn
(
xn · r

)
(63)

−1
2

∑
n

qn

{(
xn · r

)
vn −

(
vn · r

)
xn

}
.

The long-term time average of the time derivative on the LHS is also zero,
and so we can replace the first line by the negative of the second in the
expression for A. It follows that the time-averaged vector potential is

A ≈ 1
2cr3

∑
n

qn

{(
xn · r

)
vn −

(
vn · r

)
xn

}
(64)

=
1

2cr3
∑
n

qn

{(
xn × vn

)
× r
}

.

Recognizing that the anti-symmetric difference is just a triple cross product
simplifies the expression, and guides the next step in the development.
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This form naturally leads to the definition for the magnetic moment:

µ =
1
2c

∑
n

qn
〈
xn × vn

〉
t

, (65)

where we have explicitly included the time-average notation. Then the vector
potential assumes a compact form:

A =
µ× r
r3

. (66)

This is very useful for deriving A values for various current configurations.

The magnetic field is now simply obtained using standard vector identities:

B ≈ ∇×
(
µ× r
r3

)
=

�
����(
r
r3
· ∇
)
µ−

(
µ · ∇

) r
r3

+ µ∇ ·
(

r
r3

)
− r
r3

���∇ · µ (67)

= µ
���

��
∇ ·
(

r
r3

)
−
(
µ · ∇

) r
r3

.

The space derivatives of µ are both zero since they pertain to the point
where the field is measured, and not to µ itself. In addition,

∇ ·
(

r
r3

)
= r · ∇

(
1
r3

)
+

1
r3
∇ · r = 0 , (68)

a result that can be inferred from the Coulomb electric field, which has zero
divergence at far-field points where charges are not present. Next,(

µ · ∇
) r
r3

=
1
r3
(
µ · ∇

)
r + r

(
µ · ∇

) 1
r3

. (69)

Therefore, using n = r/r , one arrives at the final result for the time-averaged
magnetic field:

B =
3(n · µ) n− µ

r3
. (70)

This is the same formula as for the electric dipole, but with d → µ . This
field configuration is therefore referred to as defining a magnetic dipole.
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• Using the angle notation cos θ = µ̂ · n̂ , one can express the field com-
ponents parallel to and perpendicular to the magnetic moment µ :

B‖ =
µ
r3

(
3 cos2 θ − 1

)
, B⊥ =

µ
r3

(
3 sin θ cos θ

)
. (71)

Again, these can be easily rotated to develop the polar coordinate form for
the radial and tangential components of the dipole field:

Br ≡ B‖ cos θ +B⊥ sin θ =
2µ cos θ
r3

(72)

Bθ ≡ B‖ sin θ −B⊥ cos θ = −µ sin θ
r3

.

• Since the magnetic dipole form is derived in the far-field approximation,
it cannot be applied to find the field configuration near or inside a solenoid.

An insightful special case is that where all the charges in the system have
the same mass-to-charge ratio, i.e. qn/mn = q/m for some average charge
q and average mass m . Then the magnetic moment can be expressed as

µ ≡ 1
2c

∑
n

qnxn × vn =
q

2mc

∑
n

xn ×
(
mnvn

)
. (73)

For non-relativistic charge motions, mnvn = pn is the linear momentum of
a charge, and so

µ =
q

2mc

∑
n

xn × pn =
q

2mc
L . (74)

where L is the total angular momentum of the system. In this special non-
relativistic case, the magnetic dipole moment is proportional to the angular
momentum, and the constant of proportionality q/(2mc) is known as the
classical magneton.

• This coupling between rotating charge configurations and magnetic dipoles
sets the scene for the interpretation of spin in quantum mechanical systems.
In particular, Bohr’s quantization condition |L| = n~ for an atom’s elec-
tronic states yields the quantum magneton e~/(2mec) for the electron.
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4.3 Larmor Precession

Now immerse our system of charges/currents in an external magnetic field,
which will be assumed to be uniform on the scale of the system. The time- L&L

Sec. 45averaged Lorentz force equation is

〈F〉t =
1
c

∑
n

qn〈vn ×B〉t =
d
dt

{∑
n

qn〈xn ×B〉t
}
→ 0 . (75)

Again, since long-term time averages of derivatives are zero, then so is the
force, since it is a pure time derivative. This is because the long-term average
integrates over the entire volume, and there is no energy gain or loss since
the magnetic field does no net work.

Yet quantities derived from the ensemble force are not necessarily zero. An
example is provided by the magnetic torque:

τ =
1
c

∑
n

qn

〈
xn ×

(
vn ×B

)〉
t

. (76)

The triple vector product can be expanded (averaging notation dropped):

τ =
1
c

∑
n

qn

{
vn(xn ·B)−B(vn · xn)

}
(77)

=
1
c

∑
n

qn

{
vn(xn ·B)− 1

2
B
�
�

�
�d

dt

(
x2
n

)}
.

The time-averaging of the second term is likewise zero. One can then employ
the chain rule derivative manipulation used in deriving the magnetic moment
to anti-symmetrize the sum:

τ =
1
c

∑
n

qnvn
(
xn ·B

)
=

1
2c

∑
n

qn

{
vn
(
xn ·B

)
− xn

(
vn ·B

)}
. (78)

It then follows that the torque possesses a simple form:

τ =

{
1
2c

∑
n

qn

(
xn × vn

)}
×B = µ×B . (79)

This is a magnetic analog of the equivalent electric dipole result, τ = d×E .
The torque-free case is when µ is aligned or counter-aligned with the field.
Otherwise, the finite torque, being orthogonal to µ , will rotate the magnetic
dipole, just as a spinning top precesses due to a gravitational torque.

18



To see this more clearly, the torque is just the rate of change of the angu-
lar momentum L of the system: τ = dL/dt . Now consider a system of
charges with equal charge to mass ratios. Then qn/mn = q/m for some
average charge q and average mass m . As before, the magnetic moment is
proportional to the angular momentum, so that

dL
dt

= τ =
q

2mc
L×B = L×Ω for Ω =

q
2mc

B . (80)

This vector ODE has sinusoidal solutions for the components transverse to
Ω , leaving the magnitude of L constant in time. It is an analog of

dv
dt

=
q
mc

v ×B , (81)

the Lorentz force for a non-relativistic charge. Therefore, the magnetic mo-
ment vector µ precesses about B at a Larmor frequency eB/(2mc) , with
the tip of the vector tracing out a circle orthogonal to B. Observe that the
Larmor frequency is exactly half the cyclotron frequency!

• This Larmor precession does not change the strength or energy of the
magnetic dipole. The energy of the magnetic dipole in a uniform external
field can be derived from the Lagrangian L = eA ·v/c . The vector potential
in this case is just A = (B× r)/2 . Adapting this for the charge ensemble,

LB =
1
c

∑
n

qnAn · vn =
1
2c

∑
n

qn
(
B× xn

)
· vn

(82)

=
1
2c

∑
n

qn
(
xn × vn

)
·B ,

using a familiar vector cross product identity. Consequently

UB = −LB = −µ ·B . (83)

This is a magnetic analog of the electric dipole result UE = −d · E . The
precession of the magnetic moment clearly leaves µ ·B invariant, and so it
conserves energy: no work is done by the external field.

This result implicitly assumes no long term time changes in far-field locales,
which omits the contribution of electromagnetic radiation by accelerating
charges that generate µ . Thus, in reality, even in the absence of an external
magnetic field B, a spinning magnetic dipole will loss energy.
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