
which can be substituted directly into the Coulomb form. The vector poten-
tial in the K frame can be similarly prescribed using A = γφ′v/c = φv/c ,
since A′ = 0 . If one then sets(

r∗
)2 ≡ (r′)2

γ2
= (x− βct)2 +

(
1− β2

)
(y2 + z2) , (20)

then the components of the four-potential in the K frame are

φ =
q
r∗

, A =
q v
cr∗

=
qβ
r∗
x̂ . (21)

The electric field can be obtained in either of two ways. One path is to use
the Coulomb field form in the charge’s rest frame and Lorentz transform it
using our standard boost relations. This gives

Ex = E ′x =
qx′

(r′)3
, Ey = γE ′y =

γqy′

(r′)3
, Ez =

γqz′

(r′)3
. (22)

This is the simplest approach, yet the same equations will result by taking the
4-gradient of the 4-potential (φ,A) using the expression for r′ in Eq. (19).
The field can then be written in vector notation:

E ≡ −∇φ− 1
c
∂A
∂t

=
q r

γ2(r∗)3
for r = (x− βct, y, z) . (23)

This is the first indication that there is a retardation or time delay in
establishing the field: causality applies in communicating electromagnetic
information from a moving charge.

If the radius vector r makes an angle θ to the boost direction, then clearly
y2 + z2 = r2 sin2 θ and (x− βct)2 = r2 cos2 θ . This leads to a re-expression
for the electric field vector form:

E =
q r
γ2r3

(
1− β2 sin2 θ

)−3/2
since (r∗)2 = r2

(
1− β2 sin2 θ

)
. (24)

This highlights the angular dependence of the electric field relative to the
boost direction. The two extreme cases are parallel ( θ = 0 ) to and perpen-
dicular to ( θ = π/2 ) the boost:

E‖ ≡
∣∣E(θ = 0)

∣∣ =
1
γ2

q
r2

, E⊥ ≡
∣∣E(θ = π/2)

∣∣ = γ
q
r2

(25)
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The perpendicular field is enhanced by the boost’s γ factor, a general prop-
erty of Lorentz transformations. The parallel case is depressed by 1/γ2 . The
dividing boundary between these two asymptotic cases is θ ∼ π/2− 1/γ so
that the electric field is concentrated in a Lorentz disc.

Plot: Field Compression Perpendicular to the Boost Direction

• The angular size of the disk just reflects a conservation of electric flux:
the quasi-parallel domain is expanded in solid angle by the boost and so the
field therein is depressed, while the enhanced quasi-perpendicular domain
is reduced in solid angle by ∼ 1/γ2 so that the field magnitude must be
increased by ∼ γ . This character exactly captures length contraction along
the boost β direction from K ′ to K .

Since B′ = 0 , the magnetic field in the K system can be quickly obtained
from the Lorentz transformation formulae as a drift-like field:

B = +γ
v
c
× E′ = β ×

(
Eyŷ + Ez ẑ

)
=

β
γ2

q
(r∗)3

x̂× r , (26)

it has only components perpendicular to the boost.

It is now a simple matter to determine the Lorentz force between two charges
q1 and q2 moving with the same velocity v in K . This is

F ≡ dp
dt

= q1

{
E +

v
c
×
(

v
c
×E

)}
= q1

(
1−β2

)
E + q1

(
β ·E

)
β . (27)

Here the standard vector identity β × (β ×E) =
(
β ·E

)
β − β2 E has been

used to expand the double cross product. One can now substitute in the
trigonometric form in Eq. (24) and derive the components parallel (Fx ) and
perpendicular (Fy ) to the motion:

Fx =
q1q2
r2

cos θ

γ2
(
1− β2 sin2 θ

)3/2 , Fy =
q1q2
r2

sin θ

γ4
(
1− β2 sin2 θ

)3/2 .

(28)
An extension of these formulae to unequal velocities can be used in determin-
ing differential cross sections for Coulomb collisions between moving charges.
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Electric Field of a Moving Charge

• The electric field lines for a charge moving horizontally at 
three different constant speeds v, as labelled.  Relativistic 
“compression” of the field transverse to the motion is evident.

• Adapted from Fig. 3 of Singal, J. Phys. Comm., 4, 095023 (2020).



3 Electrostatic Multipoles

Most electrostatic systems possess ensembles of charges that are fairly con-
fined in their spatial extent, and are electrostatically neutral. Providing
compact formalism for the fields that they generate is expedient both for
describing the response of external charges to their fields, and also for el-
ements of electromagnetic radiation. The Taylor series approximation for
far-field configurations naturally establishes a multipolar or perturbation
field construction, the focus of this Section.

3.1 The Dipole Moment

The lowest order approximation is for an electrostatic dipole, essentially L&L
Sec. 40equivalent to two equal charges of opposite sign that are spatially separated.

Consider a localized distribution of charges from a large distance at point r .
If the position of charge qn is xn , then the total potential function is

φ(r) =
∑
n

qn
|r− xn|

. (29)

We explore this in the domain |r| � |xn| . The denominator of the potential
function may be expanded in a Taylor series:

φ(r) ≈ 1
|r|
∑
n

qn −
(∑

n

qnxn

)
· ∇
(

1
r

)
. (30)

We can therefore identify two moments of the charge distribution, the total
charge Q and the dipole moment d:

Q =
∑
n

qn , d =
∑
n

qnxn . (31)

If the total charge Q of the ensemble is zero, then the dipole moment is
independent of the choice for the origin of the coordinates rn → rn + a :

d →
∑
n

qnxn + a

�
�

��
∑
n

qn = d . (32)

For such a charge-neutral case, dipole moments for the subsets of positive
and negative charges can be identified.
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When Q = 0 , the system is a pure dipole, and the gradient function is
easily developed:

φ(r) ≈ φD = −d · ∇
(

1
r

)
=

d · r
r3

=
d cos θ
r2

=
d
r2
P1(cos θ) . (33)

Here θ is the angle between the r vector and the dipole moment, and P1(z)
is a Legendre polynomial. This is a far-field result, requiring that |r| be
much larger than the size of the system. The electric field is then simply

E = −∇
(

d · r
r3

)
= − 1

r3
∇(d · r)− (d · r)∇

(
1
r3

)
. (34)

If we define n = r̂ to be the unit vector in the direction of the point of
interest [sketch the geometry ], since ∇(1/r3) = −3n/r4 we can deduce

E =
3(n · d) n− d

r3
(35)

for the well-known form for the electric field of a dipole.

• Clearly, the dipolar electric potential φD scales as 1/r2 at large dis-
tances from the ensemble, while the field strength scales as 1/r3 there. These
are one order smaller than the Coulomb field due to the almost total (but
not perfect) cancellation between fields generated by charges of opposite signs
that are displaced from each other.

• Using the angle notation cos θ = d̂ · n̂ , one can express the field com-
ponents parallel to and perpendicular to the dipole moment d:

E‖ =
d
r3

(
3 cos2 θ − 1

)
, E⊥ =

d
r3

(
3 sin θ cos θ

)
. (36)

These can be easily rotated to develop the polar coordinate form for the
radial and tangential components of the dipole field:

Er ≡ E‖ cos θ + E⊥ sin θ =
2d cos θ
r3

(37)

Eθ ≡ E‖ sin θ − E⊥ cos θ = −d sin θ
r3

.
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3.2 Multipole Moments

Higher order contributions are routinely developed. The dot product of a L&L
Sec. 41moment like d and a gradient of 1/r extends to capturing higher order

moments. Thus, for r = (r1, r2, r3) ,

φ(r) =
Q
r
− d · ∇

(
1
r

)
+

1
2

∑
n

qnx
n
i x

n
j

∂2

∂ri∂rj

(
1
r

)
+ . . . . (38)

Here the xni are the components of the position of charge qn , and the second
term represents a quadrupole potential; it is of 3-tensor character. If the
system is charge neutral and of zero dipole moment, then this quadrupole
term is the leading order contribution.

• An example of a quadrupole charge structure consists of 4 charges of
equal magnitude at the vertices of a square, two positive at diagonally op-
posite vertices, and the two negative ones occupying the other vertices.

The coefficient of the second order differentials is the tensor

1
2

∑
n

qnx
n
i x

n
j . (39)

This has nine elements, however, only six of these can be independent because
the tensor is symmetric under i↔ j . Moreover, we note that the Laplacian
of the Coulomb form satisfies

∇2
(

1
r

)
≡ δij

∂2

∂ri∂rj

(
1
r

)
= 0 . (40)

This is just the Poisson equation at positions where there are no charges. This
identity restricts the degrees of freedom by one. To see this more completely,
now add a term proportional to Eq. (40) to our tensor. So, we can form

φQ =
1
2

∑
n

qn

(
xni x

n
j −

xnkx
n
k

3
δij

)
∂2

∂ri∂rj

(
1
r

)
(41)

for the quadrupole correction. This leads naturally to the definition

Dij =
∑
n

qn

(
3xni x

n
j − xnkxnk δij

)
(42)

for the quadrupole tensor. This is symmetric and traceless, i.e. Dii = 0 ,
so that it has only 5 independent quantities.
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The quadrupole term can now be manipulated by performing the gradient
derivatives:

∂2

∂ri∂rj

(
1
r

)
=

3rirj
r5
− δij
r3

. (43)

The second term here doesn’t contribute anything to φQ due to the traceless
condition δijDij = Dii = 0 . Then, identifying ni = ri/r for the scaled
projections along the coordinate axes, the quadrupole term assumes the form

φQ =
Dij

2
ninj
r3

. (44)

Since Dij is symmetric and real, i.e. Hermitian, it is diagonalizable, using a
change of coordinates (rotation). Furthermore, if it is symmetric about some
axis, e.g. the z -axis, then the diagonal form has non-zero components

Dxx = Dyy = −1
2
Dzz . (45)

The charge configuration is here invariant under rotations of coordinates
about the z -axis. In this format, the projections are

nx → sin θ cosφ , ny → sin θ sinφ , nz → cos θ , (46)

and with Dzz = D ,

φQ =
D
4r3
(
3 cos2 θ − 1

)
=

D
2r3

P2(cos θ) . (47)

Here P2(z) is a Legendre polynomial.

• The series expansion can be continued most effectively using the gener-
ating function for Legendre polynomials. This is an appropriate path because
the Coulomb potential corresponds to a central force, so that a polar coordi-
nate description works best. This leads to treatments of electrostatics using
spherical harmonics when considering complex distributions of charges.

[Reading Assignment: Spherical harmonic structure of the general Coulomb
potential: Section 41.]
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3.3 Dipoles in External Fields

Consider now a system of charges in an external electric field E(r) = ∇φ(r) .
Suppose that the gradient of the field is small on the spatial scale λ of the L&L

Sec. 42charge ensemble, i.e. that λ |∇ ·E| � 1 . Then one can expand the potential
energy U of the charge ensemble in a perturbative manner using the values
of the potential φ0 = φ(r = 0) and its derivatives at the origin:

U(r) ≡
∑
n

qn φ(xn) = φ0

∑
n

qn + (∇φ)0
∑
n

qn xn + . . . . (48)

The sums of the successive terms are just the total charge Q and the dipole
moment d , so writing E0 = −(∇φ)0 for the electric field at the origin, we
have

U(r) = Qφ0 − d · E0 +
Dij

6
∂2φ0

∂xi∂xj
+ . . . . (49)

The derivation of the quadrupole term is routine and is detailed in the book.

• Now let’s assume that the external field is produced by another system
of charges with dipole moment d2 . Use subscript 1 to label the first system.
Assume that both systems have zero net charge, so that Q1 = 0 = Q2 .
Then, the potential energy of ensemble 2 in the field of ensemble 1 is

U(r) ≈ −d2 · E1 , (50)

provided that both ensembles are sufficiently remote from each other, so that
the approximately uniform field presumption applies. For a position vector
r = rn from the center of system 1 to that of system 2, we can employ the
far-field result in Eq. (35) for a dipole’s E field to yield

U(r) ≈ −d2 ·
3(n · d1) n− d1

r3
=

d1 · d2

r3
− 3(d1 · r) (d2 · r)

r5
. (51)

From this one can deduce that for two dipoles in a side-by-side configuration
of dipoles (with di · r ≈ 0 ; sketch diagram), the minimum energy is realized
when their polarity is opposite, i.e. d2 = −αd1 for α > 0 . Conversely,
if the two dipoles are in a collinear configuration then the minimum energy
is achieved for the same polarity, i.e. d2 = αd1 . These polarity properties
extend to near-field configurations, and govern the mobility and viscosity of
atoms and molecules in both inorganic and organic materials.

12




