
3 The Particle Energy-Momentum Tensor

The next piece of the puzzle is to add in particles to the formalism. The L&L
Sec. 35matter can be presumed to be non-interacting at first. It can be described

by a mass density function in a center-of-momentum frame

µ =
∑
n

mnδ
3(r− rn) , (42)

which is a mass analog of the charge density function that was employed
when defining the four-current vector. Therefore the total rest mass is

m =

∫
µ(r) dV . (43)

As such masses move along world lines, their total energy and momentum
must be conserved, and so we need an energy-momentum tensor to express
this. The matter portion of the action is then (with γ → 1 in CM frame)

Sm = −
∫
mcds = −

∫
µ(xν)c dV ds = −

∫
µc
γ
d4x . (44)

We thus can identify the Lagrangian density for the matter:

Λm =
µc2

γ

√
uνuν . (45)

The last factor (nominally unity), is introduced to render it consistent with
the covariant Lagrangian formulation in Chapter 4. The energy-momentum
tensor can then be derived using

T νµ = q̇µ
∂Λ
∂q̇ν
− δνµΛ . (46)

The coordinates here are obviously qν → xµ so that the their derivatives are
the four-velocity q̇ν → uν . As γ is constant for unforced motion (no fields),

∂Λ
∂q̇ν

=
1
2

2
µc2

γ
uν . (47)

It follows that the matter energy-momentum tensor takes the form

T µν =
µc2

γ

(
uµuν − ηµν

�
�

�
�√

uαuα
)
→ µc2

γ
uµuν . (48)

The second term will be neglected for now, since it is a constant rest mass
energy term, upon which the energy-momentum conservation law does not
depend. With or without it, the tensor is symmetric.
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• Since T 00 = γµc2 as uµ = γ(1, v) , it defines the energy density. For
the time-space components, they are T 0i = γµvic and so define fluxes of
relativistic momentum density, again as they should. The other components
are in accord with our original interpretation of the energy-momentum tensor.
We note that the diagonal space-space elements are T ii = γµvivi .

From the elemental description, one can write down an alternative form for
the tensor:

T µν =
∑
n

mnc
2

γn
uµnu

ν
n δ

3(r− rn) =
∑
n

pµnp
ν
nc

2

En
δ3(r− rn) . (49)

This also displays the symmetrical nature of the tensor.

Now let’s consider a system that is at rest, but that contains complex internal
motions for all its particles. In other words, it is stationary, but contains
heat. Since the system has zero net momentum, the T 0i components will be
identically zero. So also will all the other off-diagonal components. The T 00

element is the energy density E . The diagonal space-space elements describe
the flux of momentum components across surfaces locally perpendicular to
the particular direction: T 11 defines the flux in the x -direction of the x -
component of momentum. Therefore,

T ii =
momentum

volume
↖↙↗↘ distance

time
=

force
area

. (50)

Accordingly, these define pressures, and if the matter is isotropic, then −σii =
P , i.e. T 11 = T 22 = T 33 = P . The matter energy-momentum tensor is

T µν =


E 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 . (51)

This is a form that is of wide applicability: to fluids, gases and plasmas, and
macroscopic bodies. It is an important construct for general relativity. In
terms of our elemental description, the energy and pressure can be written:

E =
∑
n

En δ
3(r− rn) , P =

∑
n

pjnv
j
nc

3
δ3(r− rn) . (52)
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Thus, the ensemble averages for the energy density and pressure are

E = T 00 = nmc2 〈γ〉 , P =
T ii

3
=

nmc2

3
〈γβ2〉 , (53)

where n is the number density. Thus nm = µ .

Plot: Draw a wall with momentum impact as a model of pressure.

• Not always is the system isotropic. For example, external magnetic
fields and turbulence can yield anisotropic momentum transport, thereby
modifying both the diagonal and off-diagonal elements.

A relativistic boost of an isotropic system will inherently render the distribu-
tion of masses anisotropic. Accordingly, one anticipates that the off-diagonal
elements of T µν will be populated. Consider a boost βx̂ . Then

T µν =


γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1

 ·

E 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 ·


γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1

 .

(54)
The matrix algebra generates

T µν =


γ2(E + β2P ) γ2β(E + P ) 0 0

γ2β(E + P ) γ2(P + β2E) 0 0

0 0 P 0

0 0 0 P

 . (55)

Remembering that uν = γ(1, β, 0, 0) in this case, we procure the form

T µν = (E + P )uµuν − P ηµν ,
(56)

or T µν = (E + P )uµuν − P δµν .

This is the general form for the energy-momentum tensor for matter,
applicable to arbitrary boost directions In the case of zero pressure, i.e. no
internal motions, it reduces to our original form, T µν = µc2 uµuν .

• Note that the Lorentz boost mixes pressure and energy contributions to
the new energy and momentum densities. Thus relativistic motion converts
internal energy to bulk kinetic energy and vice versa.
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• The coexistence of pressure and energy density in T µµ within the con-
struct of relativity implies that internal heat energy contributes to the mass of
a system. This is true for macroscopic bodies and also for quantum systems.

• Also, the Lorentz transformation protocol required the presence of rest
mass energy in the original stress-energy tensor. This motivated our reason-
ing for not subtracting it out when working from the Lagrangian density.

The energy density Um and energy flux vector S are obvious:

Um = γ2(E + β2P ) , S = γ2(E + P )v . (57)

From this we determine that since 0 < P < E ,

U2
m −

S2

c2 = γ2
(
E2 − β2P 2

)
> 0 . (58)

This distinctly contrasts the electromagnetic field case where this quantity
is zero. This is the signature of massive matter that travels at less than c .

The trace of the matter energy-momentum tensor is simply obtained:

T µµ = (E + P )uµuµ − P δµµ = E − 3P . (59)

This form is exactly that obtained for the system at rest, as expected since
Lorentz boosts do not alter the traces of tensors. Because the rest-system
form compares pressures to rest mass energies, the sum of the squares of
the velocity components is always inferior to the total energy, rest mass plus
kinetic energy, per unit mass. This can be seen from the form

T µµ =
∑
n

pµnpnµc
2

En
δ3(r− rn) =

∑
n

mnc
2

√
1− v2

n

c2 δ
3(r− rn) , (60)

which is always positive definite. Therefore the trace must be positive, and

P <
E
3

, (61)

a constraint on the equation of state of the system. Only when rest mass
is negligible and the mean speed of particles is very close to c can P ≈ E/3
conditions be realized, and the equation of state is ultra-relativistic.
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• The mass density function can often obey its own conservation law. This
is not sacrosanct in that mass does not always have to be conserved. But
when it is, it can be cast as a divergence of a four-vector:

∂T µν

∂xν
= 0 ⇒ ∂

∂xν

(
µuν

γ

)
= 0 , (62)

where P → 0 is set because we are considering only mass, and the two
four-velocity factors in T µν introduce a factor of two, not explicitly shown.

[Reading Assignment: Last part of L&L Section 33: Proof using the T µν

tensor that the combined E/M and matter system conserves four-momentum.]

3.1 The Virial Theorem for Ensembles of Particles

A fundamental energy theorem for closed systems of isolated particles can L&L
Sec. 34be derived from the energy-momentum conservation law. We have

∂T νµ
∂xν

≡ 1
c
∂T 0

µ

∂t
+
∂T iµ
∂xi

= 0 . (63)

Now take a long-term time average, denoted by 〈. . . 〉t . If the time interval
is large enough, the time variation must average to zero:〈∂T 0

µ

∂t

〉
t
≡ 1

T

∫ T

0

∂T 0
µ

∂t
dt =

T 0
µ(T )− T 0

µ(0)
T

→ 0 , (64)

as T →∞ . Thus, one concludes that the space component satisfies〈∂T iµ
∂xi

〉
t

= 0 , µ = 0, 1, 2, 3 . (65)

Now consider only the space components, µ → j . This can be weighted
by the space vector components, and integrated over a space volume that
extends to infinity, the result obviously being zero by virtue of Eq. (65). This
is tantamount to exploring rates of change of the energy, i.e. dot products
between force and velocity, and this protocol forms a virial. Thus,

0 =

∫
xj
〈∂T ij
∂xi

〉
t
dV = −

∫
∂xj

∂xi
〈
T ij
〉
t
dV = −

∫
δji
〈
T ij
〉
t
dV . (66)
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The integration by parts includes the integral of a perfect derivative that
is identically zero as no matter exists at infinity. Therefore, we have eval-
uated the time average of the space components of the trace of the energy-
momentum tensor T µν : ∫ 〈

T jj
〉
t
dV = 0 . (67)

We conclude that the total trace of the tensor satisfies∫ 〈
T µµ
〉
t
dV =

∫ 〈
T 0

0

〉
t
dV ≡ U ≡

∑
n

mnc
2

〈√
1− v2

n

c2

〉
t

, (68)

i.e. the total energy of the system. The last equivalence follows from
Eq. (60). This relation is the relativistic virial theorem, an extension
from classical mechanics. If we subtract off the rest mass energy, the result
is a negative total energy, kinetic plus potential, to the system:

U −Mc2 =
∑
n

mnc
2

〈{√
1− v2

n

c2 − 1

}〉
t

< 0 . (69)

This reflects the fact that for no mass or energy to be present at infinity
requires the system to be bound.
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