2 The Electromagnetic T"” Tensor

The Lagrangian density and action for the electromagnetic field are

1 v
Aem = —m FHVF'LL Wlth Sem - /Aem d4x . (22)
The “coordinates” ¢ in the covariant formulation of the equations of motion
are the components of the 4-potential A*. It then follows that the energy-
momentum tensor for the field is
v . ON 0Ay 0N
Ti = dugg, =%l = 37 3194, Jo77]

— A (23)

The gradients of the 4-potential, are, of course, the components of the electric
and magnetic fields, and so these should appear explicitly in the energy-
momentum tensor. Remember that the field tensor is

0Az  0A,
Fas = Gpa = 5.5 (24)
It follows that
OA __]. af3 aFaﬁ __]- aﬁ(Ay_Al/)
004,/ — &l O[pAyor] = sl 9% ~0a03) . (25)
Then we employ the anti-symmetry FP* = —F* and relabel the second
term on the right a <> g. Thus,
OA R Y A
Gathering together the results, we have
v 1 aA)\ VA 1 v af
T, = ~Ir OoF F +16_7r§“ FopF , (27)
or in contravariant form,
1 9A 1
w4 v 112 af
™ = I Oz, FY + 1679 FopF . (28)

Remember that in raising indices we are employing the Minkowski metric
g™ = n* . Moreover, now we see why the mixed derivatives of A* were
employed throughout this derivation: they generate the simpler § tensor.
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The tensor so derived is not symmetric. To render it thus, we add a term

104" , 1 0 N\ AMOEY

The gradient factor in the second term is just that which appears in the
covariant form of the two Maxwell equations with source contributions, i.e.
is proportional to the four-current j*#. Since we are presuming an absence
of charges, this is identically zero. Hence, the added term is a perfect deriva-
tive, the gradient of a function that is anti-symmetric in the last two indices
by virtue of the FY . Therefore, this addition is a permissible gauge trans-
formation. Accordingly, another electromagnetic field tensor appears.

The final form of the electromagnetic energy-momentum tensor is

T = ﬁ (—F*“F: + ig"” Fa,aF“ﬁ) (30)
It is clearly symmetric under p <+ v:
A (TW - T””) = PRV 4 PR = PRV p PR — L (31)

The identification of the components of the electromagnetic energy-momentum
tensor is now routine. For the first part, we use first

0 -E, -E, -E, \ 0 E, E, E.
E. 0 -B. B E. 0 -B. B
Fvo— pv8 _ x z Y _ x z y
A s E, B. 0 -B, |"™ E, B. 0 -B,
E. =B, B, 0 E. -B, B, 0

where transposition (T) is needed for summing over second index ( 3 ). Then,

0 -E, —-E, —E. 0 E, E, E,

E. 0 -B, B E., 0 -B. B
FHApY — @ =y v - 32
A E, B, 0 -B, E, B, 0 -B, (32)

E., =B, B, 0 E. -B, B, 0

Accordingly, the first part of the stress-energy tensor is

E2+E}+E? B.E,—ByE. —B.E,+B,E. ByE,— B,E,
B.E,—-ByE. B}+B2—-E; -B,B,—E,E, —B.B.—E,E.
—B.E,+ B,E. —B.B,—E,E, Bi+B:-E; —B,B.—E/E,
ByE, — B,E, —B,B.—-E,E. —-ByB.-E/E. B2+ B2-E?

—FMFY =
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The second part just involves one of the electromagnetic field invariants:

1 0 0 0

1 v aﬁ_l 2 2 0 -1 0 0

79" Fast _2<B _E> 0 0 -1 0 (33)
0O 0 0 -1

Adding the two together gives familiar results for the components involving

time:

E2 + BQ
8T ’

(E x B);

0i
™ = 47

T — U, = 1
c

S; = (34)
The time-time component is just the energy density of the E/M field. The
time-space components P’c thus involve ¢ times the Poynting vector: from
this, we can immediately infer that the Poynting vector represents the mo-

mentum density of the electromagnetic field.

The space-space diagonal components assume forms like

™ =y = 8L7r<1532+32—2E§—2B§) = U —

E? 4+ B?

T (35)

Summing these diagonal components gives the trace of the T tensor:
T =Ty -T' Ty —T; =T -T" -T2 T =0 . (36)

The traceless nature of the electromagnetic energy-momentum tensor is an
important property. It distinguishes from the case of the matter T#" | which,
as we shall soon see, has a non-zero trace marking the mass of the matter.
From this character, we infer that the electromagnetic field is massless.
The remaining off-diagonal space-space components are of forms like

1

T = g, — —E<E$Ey—|—BxBy> . (37)

The space-space components can then be expressed in a compact form

E,E: + B;B; .
Oij = %T]_éij[]em y 4] = 17273 ) (38>

which is a 3-tensor known as the Maxwell stress tensor.



Gathering together all results, the symmetric energy-momentum tensor is

Uem Sx/c Sy/c SZ/C

Sm/c —Ogx _Umy — Oz

T = (39)

Sylc —Omy —0Oyy —0y:
Sz/c —Ozz _Uyz 02z

Generally this is a complicated form. However, if E and B are not mutually
perpendicular and equal in magnitude, we can always find a Lorentz boost
that will render the two fields parallel to each other. In such a frame, the
Poynting vector is zero, and the off-diagonal elements of the Maxwell stress
tensor are also zero. In this special frame, with E || B, the T tensor is
diagonal; if the direction of the fields is along the x-axis, then

TOO = —Tll = T22 = T33 = Uem . <4O>

This diagonalization procedure with 4D rotations is possible because T* is
a Hermitian tensor.

e The case where E and B are mutually perpendicular and equal in magni-
tude is of key interest. Let us suppose that E isin x -direction, and B is in the
y-direction. The off-diagonal o;; are identically zero, as are o,, and oy, .
Furthermore, the Poynting vector components in the x and y-directions are
also zero. Given that the energy density is Uy, = FE?/41 = B*/4m in this
special case,

Uem 0 0 Uem
™ =106 00 (1)
Uem 0 0 Uem

since —0,, = Uen = S./c. Thus the flux of momentum/energy is purely
along a direction perpendicular to the fields. The energy flow is at speed
c, since T%/T% =1, and thus electromagnetic signals (light) must involve
transverse fields, i.e tranverse to S.

* In contrast to the other more general case, T"" is not diagonalizable in
this special case, since its determinant is zero. The reason is that it describes
light, which is inherently a transverse wave. The required boost would need
to be of speed ¢, which is physically inadmissable.
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