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1 The Energy-Momentum Tensor T µν

Now that we have identified energy density and momentum for the elec- L&L
Sec. 32tromagnetic field, we need to establish a tensor that captures such infor-

mation, and provides the opportunity for the analogous quantities for mat-
ter/particles to be incorporated on a similar footing under a single combined
tensor. Accordingly, we return to the action, which has both matter and
field contributions. Let us re-write the action:

S =

∫
Ldt =

∫
Λ

(
q,

∂q
∂xµ

)
dV dt ≡ 1

c

∫
Λ d4x . (1)

Here d4x = dV dt is the covariant space-time volume element. Thus, Λ is
a covariant quantity which has the dimensions of the Lagrangian divided by
the volume; thus we refer to it as the Lagrangian density. While one co-
ordinate q is specified here (defining the state of the system), it is understood
that this can be extended to numerous qi coordinates.

The equations of motion are again defined by the variational principle. For
compactness of notation, we write q̇µ ≡ ∂q/∂xµ in what follows. Thus

δS =
1
c

∫ (
∂Λ
∂q

δq +
∂Λ
∂q̇µ

δq̇µ

)
d4x

(2)

=
1
c

∫ (
∂Λ
∂q

δq +
��

���
���

∂
∂xµ

[
∂Λ
∂q̇µ

δq

]
− δq ∂

∂xµ

[
∂Λ
∂q̇µ

])
d4x = 0 .
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On the second line, the middle term can be expanded as the sum of the last
term on the second line, and the second on the first line via the chain rule
of differentiation. This same second term is a perfect derivative, and so it
vanishes upon integration over d4x once the “endpoints” are fixed. We are
thus left with another form for the covariant Euler-Lagrange equations:

∂
∂xµ

[
∂Λ
∂q̇µ

]
− ∂Λ
∂q

= 0 .

(3)

While this expresses the motion in just one co-ordinate, we can easily ex-
tend to full spacetime via four-vector constructions. This we generalize to
q → xν for particles, and q → Aν for fields. It then follows that we have
8 equations of motion in a fully covariant electromagnetic/charge system.
These, of course are constituted by the Newton-Lorentz force equation (4
components) and Maxwell’s inhomogenous equations, namely Gauss’ Law of
electrostatics and Ampere’s Law (another 4 equations).

∗ Note that the two homogeneous Maxwell’s equations (4 components)
are obtained as derivatives of the Lorentz force construction and are not
independent, essentially being coupled under the Sm−Smf umbrella through
the conservation of 4-momentum of moving charges/masses.

• This extended formulation now captures information on gradients of en-
ergy and momentum evolution in different directions in spacetime. This
provides an encompassing structure for describing conservation of energy,
momentum and angular momentum in generalized systems with evolving mo-
tions and electromagnetic fields.

∗ This is actually of fundamental importance because changes in en-
ergy/momentum configurations of particle at one spacetime position are
coupled to fields and particle motions in remote spacetime locations, and
the causal conservation laws constitute a useful mathematical prescription.

To define the conservation laws, we form spacetime gradients of the La-
grangian density:

∂Λ
∂xµ

=
∂Λ
∂q

∂q
∂xµ

+
∂Λ
∂q̇ν

∂q̇ν
∂xµ

. (4)

We next substitute for the derivative of Λ in the first term using the Euler-
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Lagrange equations:

∂Λ
∂xµ

= q̇µ
∂
∂xν

[
∂Λ
∂q̇ν

]
+
∂Λ
∂q̇ν

∂q̇ν
∂xµ

≡ ∂
∂xν

(
q̇µ
∂Λ
∂q̇ν

)
. (5)

The last step requires noticing the equivalence of second-order derivatives:

∂q̇ν
∂xµ

≡ ∂2q
∂xµ∂xν

≡ ∂q̇µ
∂xν

. (6)

To clean this gradient identity up, we recast the derivative on the left using
the identity tensor δνµ thus:

∂Λ
∂xµ

= δνµ
∂Λ
∂xν

. (7)

This then leads to the definition of a new tensor quantity

T νµ = q̇µ
∂Λ
∂q̇ν
− δνµΛ . (8)

This possesses units of energy density, and the mathematical form of a co-
variant Hamiltonian. It is termed the energy-momentum tensor, and is
sometimes referred to as the stress-energy tensor. With this definition,
the gradient of the Lagrangian density takes the form

∂T µν

∂xν
= 0 . (9)

Given the dimensional nature of the energy-momentum tensor, this relation
must be interpreted as the conservation of 4-momentum. It applies to
both charges and fields.

• Again, the construction of the energy-momentum tensor can readily be
extended to a multitude of coordinates qµ and canonical momenta q̇µ .

• By formulating this fundamental principle in this way, it captures the
law for ensembles of particles and extended field configurations. The charges
can all travel different world lines that may be causally connected via the
electromagnetic fields they both generate and respond to. The entire mat-
ter/field ensemble will be subject to 4-momentum conservation.
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1.1 Four-momentum of a Matter-Field Ensemble

Now we draw upon our study of charge conservation. Therein, we found that
the vanishing of a four-gradient of a four-vector, the four-current, corresponds
to conservation of the total charge. Here we have the gradient of a four-
tensor, and so its conservation entails the conservation of four quantities.
Let us define them to be

P µ ≡ 1
c

∫
Σ

T µνdΣν . (10)

Here dΣν represents a surface normal element applicable to any 3D hy-
persurface, which could be a 3D space volume, or not. The normalization
constant could be arbitrary, but the choice of 1/c will soon be motivated.
The conservation law can then be used to express

0 =

∫
∂T µν

∂xν
d4x =

∮
Σ

T µνdΣν . (11)

In this case, we have invoked the generalization of Gauss’ law to larger di-
mensions, so that here the hypersurface Σ is closed.

Plot: Hand draw connected hypersurfaces that combined are closed.

Now divide this closed hypersurface into two pieces, Σ1 and Σ2 . This iden-
tity therefore expresses the invariance

P µ
∣∣∣
1
≡ 1

c

∫
Σ1

T µνdΣν = −1
c

∫
Σ2

T µνdΣν ≡ −P µ
∣∣∣
2

. (12)

Accordingly, the quantity P µ is conserved. Choose one of these open hyper-
surfaces to be an infinite hyperplane x0 = const. This is an infinite volume at
constant time, and is denoted by Σ0 . The conservation law can be written

P µ ≡ 1
c

∫
Σ0

T µνdΣν =
1
c

∫
T µ0dV . (13)

Since T µν has dimensions of energy density, clearly P µ has the dimensions
of momentum, given our choice of the proportionality constant. Therefore,
P µ as defined in Eq. (10) represents the four-momentum of the entire
system, matter plus fields, and is a conserved quantity.
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• This derivation presumes that there are no contributions to any of the
hypsersurface integrations from infinity, which amounts to zero charge and
zero field at infinity.

• Drawing the connection to 4-current conservation, we have replaced the
4-current jµ by the 4-tensor T µν , and have replaced the conserved total
(scalar) charge Q by the conserved total four-momentum (vector) P µ .

The definition of the energy-momentum tensor is not unique. This should
be immediately obvious since one can perform gauge transformations of fields
and these alter the value of L . Yet, we know from 4-current conservation
that such a transformation will not impact the form of the conservation law.

This then provides the clue that a generalized gauge transformation
might be permissible, provided that it leaves the conservation law in identical
form. Consider then

T µν → T µν +
∂ψµνλ
∂xλ

. (14)

This does not, in general, give a zero four-gradient. However, if the gauge
tensor is anti-symmetric in its last two indices, ν and λ , i.e., ψµνλ = −ψµλν ,
then the conservation law receives an additional contribution

∂
∂xν

∂ψµνλ
∂xλ

= − ∂
∂xν

∂ψµλν
∂xλ

= − ∂
∂xν

∂ψµνλ
∂xλ

. (15)

The last step is just an index re-labelling ν ↔ λ , and thus the derivatives
must yield zero due to the antisymmetry property. Thus we again get

∂T µν

∂xν
= 0 . (16)

The four-momentum then maps

P µ → P µ +
1
c

∫
Σ

∂ψµνλ
∂xλ

dΣν (17)

The additional term can be expressed using the anti-symmetry and then both
of them can be converted into d4x integrations — they cancel exactly because
there are no charges or fields at infinity. Accordingly, the four-momentum a
physical quantity, is uniquely specified.
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1.2 Angular Momentum and T µν

The cross product of space and momentum gives the vector angular mo-
mentum, and this can be extended to generate a 4-tensor for angular
momentum (the system total):

Jµν ≡ xµP ν − xνP µ =
1
c

∫ (
xµT νλ − xνT µλ

)
dΣλ . (18)

This is inherently anti-symmetric, as should be the case for an extension of
the axial vector angular momentum. The conservation of angular mo-
mentum is naturally expressed via a now familiar 4-gradient identity

Jµν = const. ⇒ ∂
∂xλ

(
xµT νλ − xνT µλ

)
= 0 . (19)

The second form follows from closing a hypersurface and using Gauss’ the-
orem to convert to a volume integration. This presumes that there is no
angular momentum at infinity. Then, using ∂xµ/∂xλ = δµλ and the conser-
vation of energy-momentum, ∂T µλ/∂xλ = 0 , this yields

0 = δµλT
νλ − δνλT µλ = T νµ − T µν ⇒ T νµ = T µν . (20)

Thus a fundamental property emerges: the conservation of angular momen-
tum mandates that the energy-momentum tensor T µν is symmetric,
i.e., Hermitian. The tensor can then be represented by a matrix form

T µν =


U Pxc/V Pyc/V Pzc/V

Pxc/V −σxx −σxy −σzx
Pyc/V −σxy −σyy −σyz
Pzc/V −σzx −σyz −σzz

 . (21)

Here U represents energy density, the Pic/V are components of momentum
density fluxes in different directions, and the σij are momentum shear
terms that define how momentum components in one direction are trans-
ported in other directions.

• The couplings of (x, p) and (t,E) in the covariant T µν tensor are not
accidental, but in part by design, and will facilitate the compact description
of angular momentum L for light and the general electromagnetic field.
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