
The choice of g is otherwise arbitrary, and falls to unit conventions. In
Gaussian units, g = 1/(16π) , and this we take to be a definition. Thus,

Sf = − 1
16πc

∫
FµνF

µν d4x ≡
∫
Lf dt , (9)

so that

Lf =

∫
E2 −B2

8π
dV (10)

identifies the Lagrangian Lf for the field, is of the dimension of energy.

The total action for charges plus fields in covariant form is then

S = −
∫
mcds−

∫
q
c
Aµ dx

µ − 1
16πc

∫
FµνF

µν d4x . (11)

This completes the description of the electromagnetic interaction, and from
it one will derive the remaining Maxwell’s equations and all physical mani-
festations of classical electromagnetism.

• Observe that since xµ scales as the radius r of a volume, the potentials
Aµ must decline at least as fast as 1/r in large regions in order for the
matter-field contribution Smf to remain finite. The fields then drop off as
least as rapidly as 1/r2 on large scales, so that the pure field contribution
Sf remains finite.

• Note that for a closed system, Aµ and Fµν constitute the total field,
that from internal charges, and that from outside, since the electromagnetic
interaction is of infinite range.
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3 Four-Current

To set the scene for a covariant form for the remaining two Maxwell’s equa- L&L
Sec. 28tions that specify how fields are generated by moving charges, we need the

formalism of a four-current. This stems from the charge density ρ , which
for an ensemble of charges qi at positions ri is

ρ =
∑
i

qi δ
3(r− ri) ⇒ q ≡

∑
i

qi =
∑
i

∫
qi δ

3(r− ri) dV . (12)

The charges themselves are Lorentz invariants, but the charge density is not:
only the differential charge element dq = ρdV is an invariant. Note that the
delta function is of dimensions of an inverse volume. Thus

dq dxµ = ρ dV dxµ = ρ
dxµ

dt
dV dt (13)

is a 4-vector, and this leads naturally to the definition of the four-current:

jµ = ρuµ = (cρ, j) for j = ρv (14)

as the conventional 3D current density. For our ensemble of moving
charges, the three-current density is thus

j =
∑
i

ρi vi δ
3(r− ri) . (15)

Clearly the four-current is a bona fide four-vector since dV dt = d4x/c is an
invariant, and dρ dxµ is a four-vector.

• With this definition, the matter-field term of the action can be recast in
truly covariant form. Replacing q by an integral over dq = ρdV , it is

Smf = −1
c

∫
ρAµdx

µdV = −1
c

∫
ρuµAµdV dt = − 1

c2

∫
jµAµ d

4x .

(16)
This is clearly a Lorentz invariant. The total matter/electromagnetic inter-
action can then be re-written

S = −
∑
i

∫
mic dsi −

1
c2

∫
jµAµ d

4x− 1
16πc

∫
FµνF

µν d4x . (17)

Only the pure matter (first) term explicitly indicates the individual charge
label i in a summation, with an equivalent summation subsumed in the
four-current. This suffices to describe how fields are generated by charges.
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3.1 Equation of Charge Continuity

A fundamental property of electromagnetism is that the total charge is con- L&L
Sec. 29served. This is akin to mass/energy conservation and in fact the continuity

equation to be derived here has a parallel in fluid mechanics.

Consider a charge density ρ in a volume enclosed by a surface S . If charge is
lost from the volume, it must pass through this surface rather than evaporate.
The rate at which it passes through area element dΣ is −ρv·dΣ . The minus
sign is because of loss of charge from the volume. Then

∂
∂t

∫
ρ dV = −

∮
ρv · dΣ ≡ −

∮
j · dΣ (18)

expresses the conservation of charge, where the complete surface is integrated
over. The three-current surface integral can be converted back to a volume
integral using Gauss’ theorem:∮

j · dΣ =

∫
∇ · j dV ⇒

∫ (
∇ · j +

∂ρ
∂t

)
dV = 0 . (19)

This is the equation of charge continuity in integral form, and since it
applies for any volume, the argument of the integral must be zero at all
points, implying

∂jµ

∂xµ
≡ ∇ · j +

∂ρ
∂t

= 0 , (20)

which is the equivalent differential form.

• The same differential form can be inferred from the elemental description
of the charge ρ(r, t) and current j(r, t) :

ρ =
n∑
i=1

qi δ
3(r− ri) , j =

n∑
i=1

ρi vi δ
3(r− ri) . (21)

During the motion of all the charges (the coordinates of each charge change),
the point of observation r remains fixed. The velocity vi of each charge
and the average velocity v ≡ 〈vi〉 of the ensemble can be written

vi =
∂ri
∂t

, v =
1
n

n∑
i=1

∂ri
∂t

. (22)
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The rate of change of charge density is then

∂ρ
∂t

=
1
n

n∑
i=1

∂ρ
∂ri
· ∂ri
∂t

= −∂ρ
∂r
· 1
n

n∑
i=1

∂ri
∂t

, (23)

where the 1/n factor introduces an average over all charges. If all the charges
move in a bunch together, then we can represent the sum in the last equality
by nv , which does not depend on r and therefore has zero gradient, i.e.
divergence. It follows that

∂ρ
∂t

= −v · ∇ρ = −∇(ρv) , (24)

and we arrive at the differential form of the equation of charge continuity.

• Another finer point concerns the connection between charge conservation
and gauge invariance. Consider again the matter-field interaction term in the
action S , the only portion of it where such a connection could be evinced.
Perform a gauge transformation on the four-potential, Aµ → Aµ + ∂f/∂xµ .
The action then changes as follows:

Smf = − 1
c2

∫
jµAµ d

4x → − 1
c2

∫
jµ
(
Aµ +

∂f
∂xµ

)
d4x . (25)

Now add a term f ∂jµ/∂xµ to the integrand to form a perfect derivative.
This addition is identically zero according to the covariant form of the charge
continuity equation. Thus

Smf → − 1
c2

∫
jµAµ d

4x− 1
c2

∫
∂(f jµ)
∂xµ

d4x . (26)

When the variation principle is applied, the second term leads to contri-
butions that are fixed at the endpoints of the spacetime interval segment.
Therefore, the gauge-dependent part contributes nothing to the variation of
the action, and hence is irrelevant to the actual motion.

Accordingly, the equation of motion is independent of the choice of gauge,
and this property is a direct consequence of charge conservation.
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4 Maxwell’s Inhomogeneous Field Equations

With an added piece to the action, we can now derive additional equations
of motion, and it is sufficient and expedient to examine just the combination L&L

Sec. 30of the matter-field Smf and field Sf terms. Since we will derive a four-vector
variation, the result will be four independent equations of motion, captured
in a covariant four-vector equation. The action variation is

δS = −1
c

∫ {
jµ

c
δAµ +

1
8π

F µνδFµν

}
d4x = 0 . (27)

Remember that we have two variations contributing δFµν that are identical
and so a factor of two has been introduced in the second term.

• To be precise, we have already explored charge responses to fields, so
now, in order to investigate field responses to charges, we keep the informa-
tion on charges fixed: this means that no variations in jµ will be admitted.

In the second term, we introduce the derivatives of the four potential, perform
an index re-labelling and invoke the anti-symmetry of F µν to generate the
sequence of manipulations

F µνδFµν → F µν ∂
∂xµ

(δAν)︸ ︷︷ ︸−F µν ∂
∂xν

(δAµ) = −2F µν ∂
∂xν

(δAµ) .(28)

µ↔ ν

This results in

δS = −1
c

∫ {
jµ

c
δAµ −

1
4π

F µν ∂
∂xν

(δAµ)

}
d4x = 0 . (29)

To extract a common increment δAµ under the integral sign, one integrates
the second term by parts. Then

δS = −1
c

∫ {
jµ

c
+

1
4π

∂F µν

∂xν

}
δAµ d

4x− 1
4πc����������

[∫
F µνδAµdΣν

]∞ 0

. (30)

This is essentially a 4D version of Gauss’ theorem, generating a hypersur-
face integration. We must take the limits of residual term to infinity, since
the electromagnetic field is of infinite range. This term is then zero, because
the fields are necessarily zero at infinity for the total energy to remain finite.
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Therefore, the principal of least action yields zero for the factor in the inte-
grand, and a covariant form for the equations of motion for the field emerges:

∂F µν

∂xν
= −4π

c
jµ . (31)

These inhomogeneous equations describe how charges produce fields. The
µ = 0 case yields a scalar result involving on the electric field:

∇ · E = 4πρ [Maxwell 3] . (32)

Comparing with the magnetic equivalent, this automatically implies the exis-
tence if electric monopoles, and ingredient that was injected at the outset
in the specification of the Smf contribution to the action. The other three
equations form a cyclic ensemble, with algebra like:

�
�
�∂F 11

∂x
+
∂F 12

∂y
+
∂F 13

∂z
+

1
c
∂F 10

∂t
= −4π

c
j1

(33)

⇒ −∂Bz

∂y
+
∂By

∂z
+

1
c
∂Ex
∂t

= −4π
c
jx .

Combining them results in a vector equation known as Ampere’s Law:

∇×B =
1
c
∂E
∂t

+
4π
c

j [Maxwell 4] . (34)

This completes Maxwell’s Equations, the governing field equations for
electromagnetism. From these four differential equations, all observable prop-
erties of this classical theory can be derived.

• Observing the presence of time derivatives of each field in a conjugate
sense in the two curl equations, but with the opposite sign, we note that this
structure provides the essential mathematical character to generate electro-
magnetic waves as a solution in free space, removed from the locales of charges
that generate E/M fields, and respond to them.

The integral forms for these two equations are quickly derived. Applying
Gauss’ theorem to the monopole equation, we have∮

E · dΣ =

∫
∇ · E dV = 4π

∫
ρ dV = 4πq . (35)

Accordingly, the integrated electric flux over a closed surface equals 4π
times the charge in the enclosed volume. From this, the Coulomb potential
naturally emerges, for a point charge at the center of a spherical surface.
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Ampere’s Law clearly needs to be manipulated using Stoke’s theorem, and
the result defines the magnetic circulation around a loop:∮

B · dl =
4π
c

∫ (
j +

1
4π

∂E
∂t

)
· dΣ . (36)

This equals the flux of current j and displacement current (∝ ∂E/∂t )
integrated over the contacting surface.

• On a final note, we observe that the covariant form of the inhomogeneous
Maxwell’s equations can be differentiated to obtain the continuity equation
describing charge conservation:

4π
c
∂jµ

∂xµ
= − ∂2F µν

∂xν∂xµ
=

∂2F νµ

∂xν∂xµ
= 0 . (37)

4.1 Energy Density and Energy Flux

The time variations inherent in two of Maxwell’s equations can be combined
in the following informative way. Form L&L

Sec. 31
B ·
{
∇× E +

1
c
∂B
∂t

}
︸ ︷︷ ︸−E ·

{
∇×B− 1

c
∂E
∂t
− 4π

c
j

}
︸ ︷︷ ︸ ≡ 0 .

(38)
Faraday’s Law Ampere’s Law

This rearranges to

1
c

E · ∂E
∂t

+
1
c

B · ∂B
∂t

= −4π
c

j · E−
{

B · ∇ × E− E · ∇ ×B
}

. (39)

The factor inside the curly braces is just the divergence ∇ · (E×B) , so we
then have

1
2c

∂
∂t

(
E2 +B2

)
= −4π

c
j · E−∇ · (E×B) . (40)

To render this in final form, multiply through by c/4π , yielding

∂
∂t

(
E2 +B2

8π

)
= −j · E−∇ · S for S =

c
4π

(E×B) . (41)

The quantity S is called the Poynting vector.
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To interpret this equation, we integrate over a volume V and use Gauss’
theorem to convert the divergence term to a surface integral:

∂
∂t

∫ (
E2 +B2

8π

)
dV = −

∫
j · E dV −

∮
S · dΣ . (42)

Here dΣ is a surface element. Now the term with the current density in it is
just a sum of qv ·E over all the charges. This is the total rate of work done
on the charge ensemble, and therefore the rate of change of kinetic energy.
If the volume is infinite, then the Poynting vector term is identically zero as
the fields are zero there. Then,

d
dt

{∫ ∞
E2 +B2

8π
dV +

∑
Ekin
}

= 0 . (43)

This is obviously an expression of energy conservation. Therefore

Uem =
E2 +B2

8π
(44)

is interpreted as the energy density of the electromagnetic field, its energy
per unit volume. If we consider finite volumes, then Eq. (43) becomes

d
dt

{∫
E2 +B2

8π
dV +

∑
V

Ekin

}
= −

∮
S · dΣ . (45)

The kinetic energy contribution comes only from particles in the volume.
Thus this new form of energy conservation captures both the field and particle
content, and what is lost within the volume must pass through the enclosing
surface. The Poynting vector thus represents a energy flux density, i.e.
the amount of energy passing per unit area per unit time through the surface.

• If the loss is conveyed at speed c , then the flux density is an energy
density per speed c , and so is a momentum density.
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• It is instructive to demonstrate that the fields have the correct units to
accommodate (E2 + B2)/8π being an energy density. This is quite simple.
From the electric potential, the field has dimensions

dim(E) =
energy

length · charge
. (46)

From the gyroradius rg = p⊥c/qB for helical motion in a uniform magnetic
field, we discern that the magnetic field has dimensions

dim(B) =
energy

length · charge
, (47)

i.e. the same as the electric field (highlighting a benefit of Gaussian units).
These can then be squared and combined, producing a square of the charge
in the denominator. Then, remembering that the Coulomb potential energy
is ∼ Q2/r , we determine that the square of the charge has dimensions of
energy times length. It follows that

dim(E2 +B2) =

(
energy

length · charge

)2

=
energy

(length)3
. (48)

Clearly this is an energy density.
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