
2.1 Field Invariants

We can identify key Lorentz invariants by forming scalars from the elec- L&L
Sec. 25tromagnetic tensor Fµν . There are two such invariants that are linearly

independent and that are quickly obtained:

FµνF
µν = 2

(
B2 − E2

)
, detF =

(
E ·B

)2
. (24)

The first, the square of F , is an invariant because the contraction process,
when applied to Lorentz transformation tensors Λβ

α , suitably yields unit
tensors. The second results because the determinant of the Λβ

α tensors is
unity, and determinants multiply.

• Both these invariants can be established directly using Eq. (20).

From the matrix forms for the electromagnetic field tensor,

FµνF
µν =


0 Ex Ey Ez
−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 〈·〉


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 ,

(25)
and it is then easily seen that this is just 2(B2 − E2) . The invariance of
this quantity just expresses conservation of “internal” energy: while boosts
can enhance the total energy perceived by an observer, the relative content
in the magnetic and electric components is fixed.

• The invariance of E ·B connects to the vector identity

(E ·B)2 = E2B2 − (E×B) · (E×B) , (26)

and essentially indicates that the zero rest mass of the electromagnetic field
is conserved under Lorentz transformations: the first term on the RHS rep-
resents energy content, and the second, Poynting flux or momentum content.

∗ Note that the energy “character” of the electromagnetic field will be
established in due course, requiring the identification of how charges generate
fields: e.g. learning that q2/r has the dimensions of energy.

7



• Interpreting these invariants is enhanced using gedanken experiments
involving static charge distributions with zero current, or counterstreaming
currrents of charges of opposite sign but zero net charge. Both circumstances
possess E ·B = 0 , which cannot be transformed away by a boost.

∗ The zero values of both invariants constitutes the statement that light
is perceived as light in all frames of reference.

An elegant path to identifying the two electromagnetic invariants, and the
fact that there are only two, is offered in L&L. Consider the complex vector
F = E + iB . The Lorentz transformation properties of the fields naturally
can be expressed, not surprisingly, via rapidities χ with tanhχ = β or
coshχ = γ . Thus

E ′
x = Ex , E ′

y = γ(Ey − βBz) , E ′
z = γ(Ez + βBy) ,

(27)
B′
x = Bx , B′

y = γ(By + βEz) , B′
z = γ(Bz − βEy) ,

for a boost in the x -direction can be cast in the form

Fx = F ′
x ,

Fy = F ′
y coshχ− iF ′

z sinhχ = F ′
y cos iχ− F ′

z sin iχ , (28)

Fz = F ′
z coshχ+ iF ′

y sinhχ = F ′
z cos iχ+ F ′

y sin iχ .

This is just a rotation through imaginary angles in the (x, t) -plane. Such
an inference can be extended to the other space dimensions, and include
space rotations so that the Lorentz transformation is generally expressed as
a sequence of rotations in 3D space. The only invariant of a vector F under
such rotations is its magnitude. Accordingly

F · F =
(
E2 −B2

)
+ 2iE ·B (29)

must be the only invariant of the electromagnetic field. Taking real and imag-
inary results yields the complete set of two E/M invariants given in Eq. (24).
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6. THE ELECTROMAGNETIC
FIELD EQUATIONS

Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

1 Maxwell’s Pair of Homogeneous Equations

The first pair of field equations known as Maxwell’s Equations can be
constructed using the information of the matter-field interaction. This led L&L

Sec. 26to the identification of measurable fields E and B that can be expressed in
terms of the four-potential in the Lagrangian:

E = −1
c
∂A
∂t
−∇φ , B = ∇×A . (1)

If we take the curl of the electric field, since the curl of a gradient is zero,
then we have Faraday’s Law of induction:

∇× E = −1
c
∂B
∂t

[Maxwell 1] . (2)

Eventually, this will reveal that time-varying currents can generate time-
varying E fields, and we have the basis for transmission of electromagnetic
waves. Taking the divergence of the magnetic field also simply yields zero:

∇ ·B = 0 [Maxwell 2] . (3)

This differs in form from the divergence of E, which for a Coulomb field we
know is non-zero. Accordingly, this equation expresses the non-existence of
magnetic monopoles. To devise a theory that predicts magnetic monopoles,
the matter-field action must be modified from our adopted Smf form.

• These two homogeneous equations do not describe how charges generate
fields. They also do not determine ∂E/∂t . Thus, we know we need more!
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These two equations, one scalar, one vector, are linear derivatives of the
fields, and so are second order derivatives of the four-potential. A covariant
form for these Maxwell equations follows from the E/M field tensor:

Fαβ =
∂Aβ
∂xα

− ∂Aα
∂xβ

⇒ ∂Fαµ
∂xν

+
∂Fµν
∂xα

+
∂Fνα
∂xµ

= 0 . (4)

This is a cyclic divergence that is anti-symmetric in all three indices. The
only components that are not zero are when α 6= µ 6= ν . Insertion of the
field tensor reveals that there are only 4 independent equations, matching
the number in Maxwell 1+2. Note that one could take covariant derivatives
of the Lorentz force equation

mc2
duµ
ds

= q Fµνu
ν (5)

to establish the same cyclic identity using four-accelerations.

The alternative to the differential form of these two Maxwell equations
is given by integral forms, obtained by methods of vector calculus. The
magnetic field can be integrated over a volume or equivalently the surface
integral encapsulating that volume:

0 =

∫
∇ ·B dV =

∮
B · dΣ , (6)

where dΣ is the vector surface element for the volume. This is Gauss’
Law and states that the net magnetic flux through a closed surface is zero,
a consequence of the non-existence of magnetic monopoles.

The electric field is manipulated by Stoke’s theorem when morphing a
surface integral into a line integral:

−1
c
∂
∂t

∫
B · dΣ =

∫
∇× E · dΣ =

∮
E · dl . (7)

This applies to non-closed surfaces and so the LHS is not necessarily zero.
Yet the line integral on the RHS, which is called the electric circulation,
does in fact go to zero (trivially) when the surface is closed.
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2 The Action of the Electromagnetic Field

To derive the other two Maxwell’s equations we need more information, and L&L
Sec. 27this must concern the electromagnetic field itself. Since light transmits en-

ergy and momentum from one place to another, an experimental fact, the
E/M field on its own must contribute to the Lagrangian, Hamiltonian and
action S = Sm + Smf + Sf . Without such a contribution, we cannot derive
the existence of electromagnetic waves.

The contribution Sf of the field to the action therefore cannot depend on
the charge. Thus, couplings of the form [qAµ]n are excluded. The following
elements guide the natural choice for this portion of the action:

• The E and B fields satisfy the superposition principle, namely that
the field produced by a system of charges in motion is equal to the sum
of the fields produced by each individual charge.

• This linearity imposes the constraint of linearity on the field equations,
including the equation of motion for charges. [already established]

• The information on the field F µν must then be inherently quadratic,
so that Hamilton’s principle will then derive linear appearance of F µν .
If it is of higher order, then linearity is not possible. If it is of linear
order, then charges will not generate fields in a linear manner.

• In a quadratic construction, the potentials cannot appear since they
are not uniquely-determined. This is not an issue for the linear Smf
term because gauges are eliminate via integrations by parts.

This shopping list suggests a choice involving the contraction FµνF
µν . We

already know that this possesses the dimensions of energy density. This
provides an additional physics motivation for the quadratic form: that it
naturally leads to the formation of energy in the Lagrangian. Thus we posit:

Sf = −g
c

∫
FµνF

µν d4x , (8)

where g is a constant, inferred to be dimensionless because the integrand
FµνF

µν = 2(B2−E2) has units of energy density. Since the electric field can
be made arbitrarily large by rapidly varying the vector potential, ∂A/∂t ,
the sign of g must be positive in order to guarantee a minimum in the action.
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The choice of g is otherwise arbitrary, and falls to unit conventions. In
Gaussian units, g = 1/(16π) , and this we take to be a definition. Thus,

Sf = − 1
16πc

∫
FµνF

µν d4x ≡
∫
Lf dt , (9)

so that

Lf =

∫
E2 −B2

8π
dV (10)

identifies the Lagrangian Lf for the field, is of the dimension of energy.

The total action for charges plus fields in covariant form is then

S = −
∫
mcds−

∫
q
c
Aµ dx

µ − 1
16πc

∫
FµνF

µν d4x . (11)

This completes the description of the electromagnetic interaction, and from
it one will derive the remaining Maxwell’s equations and all physical mani-
festations of classical electromagnetism.

• Observe that since xµ scales as the radius r of a volume, the potentials
must decline at least as fast as 1/r in large regions in order for the matter-
field contribution to remain finite. The fields then drop off as least as rapidly
as 1/r2 on large scales, so that the pure field contribution Sf remains finite.

• Note that for a closed system, Aµ and Fµν constitute the total field,
that from internal charges, and that from outside, since the electromagnetic
interaction is of infinite range.
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