
5. THE ELECTROMAGNETIC
FIELD TENSOR

Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

1 The Electromagnetic Field Tensor

We have discovered in Chapter 4 the equation of motion of charges in elec-
tromagnetic fields in familiar three-dimensional vector form. Here we seek
to extend this to covariant form in spacetime. The coupling constant be-
tween the four-force and the four-velocity will lead to the definition of the
electromagnetic field tensor, F µν .

Given the two contributions to the action thus far posited, the matter term,
and the matter-field interaction, the principle of least action states that L&L

Sec. 23
δS = δ

∫ b

a

(
−mcds− q

c
Aµ dx

µ

)
= 0 (1)

The line element can be expressed as ds =
√
dxµdxµ . Then the variation

can be brought inside the integration thus:

δS = −
∫ b

a

(
mc

dxµd(δxµ)
ds

+
q
c
Aµ d(δxµ) +

q
c
δAµ dx

µ

)
= 0 . (2)

Now integrate the first two terms by parts, for both of which the evaluations
at the fixed endpoints yield zero. The first term is proportional to uµd(δxµ) ,
so that it morphs into a term proportional to duµ δx

µ . The second term
morphs into one proportional to δxµdAµ . Thus,∫ b

a

(
mc δxµ duµ +

q
c
δxµ dAµ −

q
c
δAν dx

ν

)
−
��

���
���

���
�[(

mcuµ +
q
c
Aµ

)
δxµ
]b
a

= 0 .

(3)
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Observe that the dummy summation index µ has been changed to ν in the
third term, to precipitate a convenience that will shortly become obvious.
The vector potential factors in the last two terms are manipulated by the
chain rule for differentiation:

dAµ →
∂Aµ
∂xν

dxν , δAν →
∂Aν
∂xµ

δxµ (4)

Therefore, ∫ b

a

δxµ
(
mcduµ +

q
c
∂Aµ
∂xν

dxν − q
c
∂Aν
∂xµ

dxν
)

= 0 . (5)

Now perform the replacements dµµ → dµµ/ds × ds and dxν → uνds . The
integration simplifies to∫ b

a

δxµ
[
mc

duµ
ds
− q
c

(
∂Aν
∂xµ
− ∂Aµ
∂xν

)
uν
]
ds = 0 . (6)

Again, since this applies to arbitrary δxµ , the factor in square brackets must
be zero, yielding the covariant equation of motion:

mc
duµ
ds

=
q
c
Fµν u

ν for Fµν =
∂Aν
∂xµ
− ∂Aµ
∂xν

. (7)

The anti-symmetric tensor Fµν is called the electromagnetic field tensor;
its components will be detailed shortly.

• Eq. (7) is the covariant form of the Lorentz force equation, expressing
the rate of change of 4-momentum in terms of electromagnetic forces; we
have derived it before. It really only expresses three independent equations,
an assertion that can be proven using the contraction

0 =
mc
2
d(uµuµ)
ds

= mcuµ
duµ
ds

=
q
c
uµ Fµν u

ν = −q
c
uν Fνµ u

µ . (8)

This uses uµuµ = 1 on the LHS and the anti-symmetry of the field tensor
on the RHS to show that the four equations are linearly dependent.
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The anti-symmetry of the field tensor guarantees that F00 = F11 = F22 =
F33 = 0 , i.e. it is traceless, and that it possesses only six independent non-
zero components. Using Aµ = (φ, −A) , algebraic evaluation yields

F01 = −1
c
∂Ax
∂t
− ∂φ
∂x

= Ex

F02 = −1
c
∂Ay
∂t
− ∂φ
∂y

= Ey

F03 = −1
c
∂Az
∂t
− ∂φ
∂z

= Ez
(9)

F12 = −∂Ay
∂x

+
∂Ax
∂y

= −Bz

F13 =
∂Ax
∂z
− ∂Az

∂x
= By

F23 = −∂Az
∂y

+
∂Ay
∂z

= −Bx .

The matrix representation of the covariant field tensor is then

Fµν =


0 Ex Ey Ez
−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

 . (10)

Raising both indices changes the sign of the electric field components but
keeps the magnetic field components unaltered. The contravariant form is

F µν =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 . (11)

In terms of the polar/axial vector designation, we have Fµν = (E, B) and
F µν = (−E, B) , perhaps an easier way to remember the matrix forms. Thus,
E is a polar vector, while B is an axial vector.
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The force consists of two parts on the RHS, the first being independent of
the velocity of the particle, and proportional to the charge. The ratio of the
two is defined to be the electric field intensity:

E = −1
c
∂A
∂t
−∇φ . (15)

The second part of the force is proportional to the velocity, but is always
perpendicular to it. Thus we define the magnetic field intensity:

B = ∇×A . (16)

A general electromagnetic field is thus a superposition of an electric and a
magnetic field. The equation of motion then assumes the form

dp
dt

= q

{
E +

v
c
×B

}
, (17)

which is termed the Newton-Lorentz force equation.

• It is immediately apparent that adding a constant to either φ or A
will not alter the electric and magnetic fields. This provides a lead-in to the
discussion of gauge transformations shortly.

The rate at which the energy of a charge changes in an electromagnetic field
is simply determined. Forming a scalar product of the velocity with the force,

dE
dt

= v · dp
dt

= q v · E → dEK
dt

. (18)

Here EK = (γ − 1)mc2 is the kinetic energy. Observe that a magnetic field
does no work on a charge: only the electric field change its energy. The work
done over a space interval dr is thus dW = qE · dr .
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• If, as before, we impose the path in the action pertaining to the exact
equation of motion, but then choose to vary the endpoint b of the path
integral, then the perturbation yields

δS = −
(
mcuµ +

q
c
Aµ

)
δxµ ⇒ ∂S

∂xµ
= −

(
pµ +

q
c
Aµ

)
. (12)

This gradient is just the negative of the canonical momentum of a particle,
and so one has

P µ ≡ − ∂S
∂xµ

= pµ +
q
c
Aµ =

(
EK + qφ

c
, p +

q
c

A

)
, (13)

and P µPµ can be used to express the square of the relativistic Hamiltonian.

2 Lorentz Transformation of the Field

The vector potential is a true four-vector, and so its Lorentz transformation
is of familiar form. For boosts parallel to the x -axis, L&L

Sec. 24
φ = γ

(
φ′ + βA′

x

)
, Ax = γ

(
A′
x + βφ′

)
, Ay = A′

y , Az = A′
z .

(14)
Since E and B are not space components of any four-vector, their trans-
formation is more complicated. It is possible to derive their transformation
relations using these vector potential identities. However, as they are com-
ponents of the electromagnetic field tensor, this affords an expedient path to
proceed. Let v = βc x̂ be the velocity of the K ′ frame in inertial frame K .

Plot: Draw K and K ′ frames and relative speed v .

From the Lorentz transformation relation for the electromagnetic tensor,

F ′µν =
∂x′µ

∂xα
Fαβ ∂x

′ν

∂xβ
≡ Λµ

α F
αβ Λν

β . (15)

Here Λµ
α is the Lorentz transformation matrix for the inverse boost, from

the K ′ frame to the K frame, and so is obtained from our habitual form
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by setting β → −β . Noting that ΛT = Λ for the symmetric (Hermitian)
Lorentz transformation matrix, we can build the matrix algebra thus:

Fαβ Λν
β →


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 ·


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 , (16)

using the contravariant form Fαβ . The next step yields Λ
α

µ Fαβ Λ
β

ν :
γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 ·


γβEx −γEx −Ey −Ez
γEx −γβEx −Bz By

γ(Ey − βBz) γ(Bz − βEy) 0 −Bx

γ(Ez + βBy) −γ(By + βEz) Bx 0

 .

(17)
This algebra gives an upper half evaluation

((((
(((

((
γ2βEx − γ2βEx γ2β2Ex − γ2Ex γ(−Ey + βBz) −γ(Ez + βBy)

. . . (((
((((

((
γ2βEx − γ2βEx γ(−Bz + βEy) γ(By + βEz)

. . . . . . 0 −Bx

. . . . . . . . . 0

 ,

(18)
with anti-symmetry constraining the remaining elements. Identifying each of
these elements with the fields in the F ′µν contravariant representation, we
arrive at the boost relations for electromagnetic fields:

E ′
x = Ex , E ′

y = γ(Ey − βBz) , E ′
z = γ(Ez + βBy) ,

(19)
B′
x = Bx , B′

y = γ(By + βEz) , B′
z = γ(Bz − βEy) .

A compact representation of these relations for a pure boost with general
velocity v = cβ for the motion of the K ′ frame in the K frame, is that the
field components transform as

E′
‖ = E‖ , E′

⊥ = γ
(
E⊥ + β ×B⊥

)
,

(20)

B′
‖ = B‖ , B′

⊥ = γ
(
B⊥ − β × E⊥

)
.
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Yet another form that is fully general, and that does not employ the ⊥, ‖
notation is from Jackson p.558 (3rd Edition):

E′ = γ(E + β ×B)− γ2

γ + 1
β(β · E) ,

(21)

B′ = γ(B− β × E)− γ2

γ + 1
β(β ·B) .

These alternative forms can be used to ascertain whether the either electric or
magnetic field (but not both) can be eliminated by a Lorentz transformation.

• Observe the symmetric role played by E and −B . It is immediately
realized that there is no such thing as a pure electric or magnetic field in all
frames; they are not Lorentz invariants.

• Either form of these relations can be used to show that if E and B are
parallel, then no boost can eliminate either the electric or the magnetic field
entirely. Conversely, they can also be used to determine the special boost
velocity β that yields E′ and B′ fields parallel to each other.

• For a physical understanding of these transformations, consider a capac-
itance established by two planes of charges separated by distance d in the R & L,

Sec. 4.5K frame, and oriented perpendicular to the x direction. The electric field
E = 4πσ is uniform between these planes whose surface charge density is σ
(from Maxwell’s equations, to come). From the perspective of the K ′ frame,
the capacitor moves with speed v along x , so that the planes are now sep-
arated by d/γ . Yet, the surface charge density is unchanged σ′ = σ , since
the areas do not change, nor does the total charge on each plane. Then

E′
‖ = E‖ (22)

authomatically follows.

• Now orient the capacitor planes parallel to the x axis. Since the lengths
are contracted, the charge density is increased to σ′ = γσ in the K ′ frame.
We have a surface current density µ′ = −σ′v ≡ −γσv in the K ′ frame,
giving rise to a magnetic field B′

z = −(4π/c)µ′ in the z -direction. Thus,

E′
⊥ = γE⊥ , B′

⊥ = −γβ × E⊥ . (23)

Other constructions combined with superposition of fields can yield the total
ensemble of transformation elements.

6




