
• The Lorentz force equation evinces the property that time reversal of the
motion, with t → −t and v → −v (i.e. sending the particle backwards),
one needs the electric field to remain unchanged, but the magnetic field must
reverse its sign:

t → −t ⇒ E → E , B → −B . (19)

Thus, as intimated in our exploration of tensors,

E is a polar vector,

B is an axial vector.

This construction determines their suitable placement in any electromagnetic
field tensor. In terms of the four-potential, this is then a transformation

t → −t ⇒ φ → φ , A → −A ; (20)

the vector potential changes sign, but the scalar potential does not.

• Changing the sign of the charge e → −e leads to helicity reversal
of trajectories, i.e. is reflection-symmetric in velocity space: this is used
to effect for charge discrimination in particle physics experiments (LHC,
RHIC, FermiLab) and cosmic ray detectors such as AMS.

Plot: Anti-particle Trajectories in a Magnetized Bubble Chanber

The equation motion can be derived instead via fully covariant develop-
ment. In this the starting point is the covariant form of the Euler-Lagrange Alternate

derivationequations combined with a manifestly covariant Lagrangian L . Thus

d
ds

(
∂L
∂uµ

)
=

∂L
∂xµ

with L = mc2
√
uνuν + q Aνu

ν . (21)

Here the four velocity uν = dxν/ds has no explicit (only implicit) dependence
on coordinates xν , but the four-potential Aν(x

ν) does. Accordingly, we set
L = L(xν , uν) when taking the various partial derivatives. First,

∂L
∂xµ

= q
∂Aν
∂xµ

uν . (22)
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e+e- Pairs in a Bubble Chamber

• Tracks in a FermiLab experiment 
bubble chamber, highlighting an 
electron (red)-positron (purple) pair 
produced by a photon (yellow). 

• The photon was produced by a charged
particle colliding with a nucleus.

• A B field generates the curvature of 
charge trajectories, which terminate 
due to energy loss. 

• The direction of the curves 
highlights the sign of the charge.

• Credit: from the CERN HST2005
on-line archive.



The four-velocity derivative is more involved in that the metric tensor must
be introduced in order to render the kinematic portion of the Lagrangian in
a form that only involves only contravariant forms of the four-velocity:

∂
∂uµ
√
uνuν ≡

∂
∂uµ

√
gνρuρuν =

1
2
�
�
�
�1√

uνuν

1
∂
∂uµ

(
gνρu

ρuν
)

(23)

=
1
2

(
gνρδ

ρ
µu

ν + gνρu
ρδνµ

)
= uµ .

The other part of the four-velocity derivative is trivial, so that the covariant
form of the canonical four-momentum can be written

Pµ ≡
1
c
∂L
∂uµ

= mcuµ +
q
c
Aµ , (24)

so that the contravariant form is

P µ =

(
γmc+

qφ
c
, p +

q
c

A

)
. (25)

• We now have all the requisite pieces to manipulate the LHS of the Euler-
Lagrange equations. Thus,

d
ds

(
∂L
∂uµ

)
= mc2

duµ
ds

+ q
dAµ
ds

= mc2
duµ
ds

+ q
∂Aµ
∂xν

uν , (26)

where we have employed the chain rule for differentiation on the term involv-
ing the four-potential Aν(x

ν) . We then arrive at the covariant form for the
Lorentz force equation of motion involving the E/M field tensor Fµν :

mc2
duµ
ds

= q Fµνu
ν for Fµν ≡

∂Aν
∂xµ
− ∂Aµ
∂xν

. (27)

This we will derive directly from the action in due course. Clearly, the
tensor Fµν is anti-symmetric. In particular, the µ = 0 component yields
the work done, so that one infers that the F0ν components capture only E
field information (polar vector).
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2.1 Uniform Fields

Constant or uniform fields are useful constructs in experiments. They are
such that the field intensity is the same at all points in space, at least within L&L

Sec. 19some volume of interest. Uniform E fields can be constructed using large
planar sheets of charge, or capacitances. Uniform B fields can be approxi-
mated by running currents through tightly-wound coils of significant length:
the interior is then a constant magnetic field to good approximation.

Plot: Hand-drawn diagram of capacitance and coil.

For a uniform electric field, the potential function φ has a preferred direction:

∇φ = −E ⇒ φ = −E · r , (28)

where we note that since any spatial derivative of E is zero,

∇(E · r) ≡ (E · ∇)r +���
��(r · ∇)E 0 + E×�����(∇× r) 0 + r×����

�
(∇× E) 0 (29)

so that ∇(E · r) = E . The vector potential in a uniform magnetic field also
assumes a simple form:

B = ∇×A ⇒ A =
1
2

B× r . (30)

This is a little trickier to derive, but again we use a well-known formula from
vector analysis:

∇× (B× r) = B∇ · r− (B · ∇)r = 2 B , (31)

noting that ∇·r = 3 and that resolving each component yields (B·∇)r = B .

2.2 Gauge Invariance

Thus far the formulation has involved a quantity called the four-potential that L&L
Sec. 18has limited physical information, in that it cannot be measured in totality,

just inferred. Since it appears only in terms of its gradients in the equations
of motion, it cannot be uniquely determined by a given physical system, i.e.
one set of values for E and B does not specify Aµ uniquely.
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Consider a gauge transformation of the four-potential:

Aµ → A′µ = Aµ −
∂f
∂xµ

(32)

for some arbitrary scalar function f(xν) of spacetime coordinates. Under this
transformation, the matter-field contribution to the action changes thus:

Smf →
q
c

∫ b

a

Aµ dx
µ − q

c

∫ b

a

∂f
∂xµ

dxµ . (33)

It is simply observed that for each of the spacetime components, the second
integral is a perfect derivative and thus is expressible in terms of the function
f(xν) evaluated at the endpoints a and b of the spacetime path.

• Thus with the principle of least action, this gauge transformation cannot
change the equation of motion, so that the fields are left invariant.

To elucidate this further, distilling the gauge transformation into its space-
time components, we have

A′ = A +∇f , φ′ = φ− 1
c
∂f
∂t

. (34)

and it is clearly determined that such transformations do not alter the fields

E = −1
c
∂A
∂t
−∇φ and B = ∇×A . (35)

This establishes the principle of the gauge invariance of electromagnetic
fields. Common examples include the Coulomb gauge, where ∇ ·A = 0 ,
the Lorenz gauge, where ∇·A = −(1/c) ∂φ/∂t or ∂µAµ = 0 in covariant
form. Less popular is the covariant Fock-Schwinger gauge, xµAµ = 0 .

• In due course, we shall discern that motions are not impacted by gauge
transformations, an invariance that is connected to charge conservation.

• Observe that neither the Lagrangian nor the Hamiltonian are gauge in-
variant since they explicitly involve φ and A . This is not a problem as they
are functional forms, and are not experimentally determined; all measured
energies are obtained via differences (i.e., work done) that do not calibrate a
ground state energy, which can be absorbed in a choice of gauge.
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3 Charge Motions in Electromagnetic Fields

Three cases of motions in static, uniform electromagnetic fields are explored
here, to capture the essence of particle mechanics. The examples are for
a uniform E field, a uniform B field, an a combination of the two. The
summary results are:

• in a uniform E field, the trajectory is a planar catenary curve;

• in a uniform B field, the trajectory is a helix,

• in parallel E and B fields, the path is a progressively stretched helix,

• in oblique E and B fields, the path has a cross section of a cycloid or
a trochoid perpendicular to B, stretched by acceleration parallel to B.

3.1 Motion in Uniform Electric Fields

Assume that E = Exx̂ . The motion is obviously in a plane, which we will L&L
Sec. 20presume to be in the x − y plane. If the initial component of speed in the

y -direction is zero, then the motion will be rectilinear. The Lorentz force
equation of motion yields

dp
dt

= qE ⇒ ṗx = qE , ṗy = 0 , (36)

for Ex ≡ E . We will presume truly relativistic particles so that p = γmv .
The integrals of the momentum components are

px = qE t , py = p0 . (37)

Here we assume that px = 0 at t = 0 , though this can be easily gen-
eralized. The kinematic energy of the particle is EK =

√
m2c4 + p2c2 ,

and represents the Hamiltonian without the contribution from the electro-
static potential φ . Note that we distinguish this from the kinetic energy
EK −mc2 , and remark that the standard terminology here differs from that
in L&L. Therefore,

EK =
√
m2c4 + p20c

2 + (qEct)2 =
√
E20 + (qEct)2 , (38)

where E0 is the value of EK at t = 0 .
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The velocity of the charge is v = pc2/EK . From this one forms the differen-
tial equation for the evolution of the component of velocity in the x -direction,
vx = βxc . Using Eq. (37), we have

βx =
1
c
dx
dt

=
pxc
EK

=
qE ct√

E20 + (qEct)2
. (39)

If we scale the time variable via τ = qE ct/E0 , this is routinely integrated:

dx
dτ

=
E0
qE

τ√
1 + τ 2

⇒ x =
E0
qE

{√
1 + τ 2 − 1

}
. (40)

Here it has been assumed that x = 0 at t = 0 to determine the constant of
integration.

The motion in the y -direction is defined by

βy =
1
c
dy
dt

=
pyc
EK

=
p0c√

E20 + (qEct)2
=

p0c
E0

1√
1 + τ 2

, (41)

which integrates to

y =
p0c
qE

sinh−1 τ ≡ p0c
qE

loge

[
τ +
√

1 + τ 2
]

. (42)

If we use this to eliminate τ in favor of y , and substitute in Eq. (40), the
result is

qE
E0

x = cosh

(
qE
p0c

y

)
− 1 . (43)

Thus the general path for constant acceleration in special relativity, in this
case precipitated by a uniform electric field, as a catenary curve.

• In the special case of non-relativistic motions with v � c , we can set
p0 = mv0 and E0 = mc2 , and expand the solution in powers of v/c . For
the trajectory shape, this is tantamount to setting qEy/p0c � 1 , and the
leading order contribution from the Taylor series expansion of Eq. (43) yields

x ≈ qE
2mv20

y2 . (44)

This is a parabolic path, the well-known result for the general path for
constant acceleration in Galilean relativity, i.e. classical mechanics.
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