
Tracks in Particle Physics 
Detector Chambers

• Left: tracks created by a neutrino entering from the top in CERN’s 
Gargamelle bubble chamber (July 1973), probing weak neutral currents.

• Right: tracks precipitated in collisions of protons at 13 TeV CM frame energy 
(June 2015) in the LHC’s ALICE detector.  Courtesy: CERN News archive.



3.3 Kinematics of Relativistic Scattering

Many interactions in particle accelerators and in the cosmos involve scatter-
ings of relativistic particles. We briefly outline how to assess the kinematics
of such events. The exposition in L&L involves a certain amount of algebra
that is not particularly enlightening, so our summary here will be limited.

Plot: Draw schematic of two colliding species

Considerations will first be restricted to elastic collisions of two particles,
not necessarily identical. They suffice to illustrate the construction that can L&L

Sec. 13extend to conversion of species. We will use subscripts f to denote final
species (instead of primes), and leave off subscripts for the ingoing particles.
Four-momentum conservation gives

pµ1 + pµ2 = pµ1f + pµ2f . (57)

This can be re-arranged and squared in different ways to develop energy and
momentum conservation algebra. We give an example here to illustrate the
protocols. First, noting that pµp

µ = m2 (hereafter, we will set c→ 1 ), form(
pµ1 + pµ2 − p

µ
1f

)2
=
(
pµ2f
)2 ⇒ m2

1 + p1µp
µ
2 −
(
p1µ + p2µ

)
pµ1f = 0 . (58)

This has divided the square by two. A similar relation can be formed by
interchanging the particles:(
pµ1 + pµ2 − p

µ
2f

)2
=
(
pµ1f
)2 ⇒ m2

2 + p1µp
µ
2 −
(
p1µ + p2µ

)
pµ2f = 0 . (59)

Each of the four-momentum products in these equations can be evaluated for
a specific reference frame. The preferred choices are the rest frame (L-frame)
of one of the species, and the center-of-momentum (CM) frame. The sum
and difference between these two identities are

m2
1 −m2

2 =
(
p1µ + p2µ

)(
pµ1f − p

µ
2f

)
,

(60)

m2
1 +m2

2 + 2 p1µp
µ
2 =

(
p1µ + p2µ

)(
pµ1f + pµ2f

)
.

The second of these, the sum of the two identities, is trivial if Eq. (57) is
used to replace the final four-momenta.
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• For an L-frame case, we set m2 at rest initially. Then pµ2 = (m2, 0) .
Now let βc be the speeds of the particles (incoming or outgoing) in the
L-frame. Then the four-momentum products are

p1µp
µ
2 = E1m2 → γ1m1m2

p1µp
µ
1f = E1E1f − p1 · p1f → γ1γ1f

(
1− β1β1f cos θ1f

)
m2

1

p1µp
µ
2f = E1E2f − p1 · p2f → γ1γ2f

(
1− β1β2f cos θ2f

)
m1m2 (61)

p2µp
µ
1f = E1fm2 → γ1fm1m2

p2µp
µ
2f = E2fm2 → γ2f m

2
2 .

Here the θ1f and θ2f angles define the directions of the outgoing momenta
relative to the incoming momentum p1 . These angles are correlated with
the energies of these final particles, and the precise relations can be deter-
mined by substitution of the appropriate evaluations into the 4-momentum
conservation relations. One example is

γ2f =
(E1 +m2c

2)2 + p21c
2 cos2 θ2f

(E1 +m2c
2)2 − p21c2 cos2 θ2f

(62)

=
(γ1m1 +m2)

2 + γ21β
2
1m

2
1 cos2 θ2f

(γ1m1 +m2)
2 − γ21β2

1m
2
1 cos2 θ2f

the proof of which is left as an exercise. Clearly, θ2f = π/2 defines a min-
imum for γ2f ( = 1 , rest condition), while θ2f = 0, π define maxima; this
can be simply demonstrated graphically, or by direct differentiation.

The expression for γ1f is more involved and will not be displayed here. Yet,
for the massless case m1 → 0 , e.g. for photons colliding with electrons at
rest, one can quickly develop Eq. (58) along the lines of

p1µp
µ
2 = p1µp

µ
1f + p2µp

µ
1f

(63)
⇒ E1m2 = E1E1f (1− cos θ1f ) + E1fm2 .

The second equation can be re-arranged, and the c2 factors re-introduced:

E1f
E1

=
m2c

2

m2c
2 + E1(1− cos θ1f )

⇒ λf − λ =
h
mc

(
1− cos θ1f

)
. (64)

This, of course, is the classic Compton formula, where we have expressed
the photon energies in terms of wavelengths: E1 → hc/λ and E1f → hc/λf .
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3. CHARGES IN
ELECTROMAGNETIC FIELDS

Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

Preface: The approach to the formulation of electromagnetism by Landau &
Lifshitz follows a formal path that employs the principle of special relativity L&L

Sec. 15at its outset. Start with an appropriate form for the action, derive the forms
for the Lagrangian and Hamiltonian, and thereafter deduce logical definitions
for the fields that are consistent with historical E/M experiments.

• We will continue to presume that particles that are subject to electro-
magnetic forces are points, and not extended; this can be accommodated in
quantum mechanics where particles constitute spacetime probability distri-
butions of localization: relativity impacts the coordinate description.

• The electromagnetic interaction between two remote particles is not in-
stantaneous. One particle establishes an E/M field that the other experiences
at a later time and vice versa. Causal connection constrains information
conveyance from one particle to the other according to the signal speed. Ac-
cordingly, retarded potentials will eventually appear in the formalism.

∗ In a vacuum, c is the communication speed of information about
changes in the electromagnetic field.

• An immediate consequence of this causality restriction is that the con-
cept of a macroscopic rigid body is an approximation that is inaccurate
when rectilinear or rotational motion approaches the speed of light. Defor-
mations within the body will be retarded as the E/M force (and any other
force) communicates to remote parts of it.

∗ Likewise, rigid field structure is an imperfect concept, e.g. pulsars.
Relativistic retardation of field structure occurs in accelerating systems.
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1 Action, Lagrangian and Hamiltonian

The equations of motion in an electromagnetic field are to be derived using
an upgrade of the action. Having formulated the action for free particles, the L&L

Sec. 16logical step is to introduce additional terms that are either scalar, vector or
tensor in character. A scalar modification should reduce to the one already
posited for relativistic systems. Moreover, we know that the E/M force
has vector character. The need to go to tensor modifications of the action
would have to match constraints from observations. As it turns out, a vector
contribution to S from electromagnetism suffices to match experimental
results. We thus posit the form

S = Sm + Smf =

∫ b

a

(
−mcds− q

c
Aµ dx

µ

)
≡
∫ tb

ta

Ldt (1)

for the covariant action in the presence of E/M forces and fields. We know
that the charge q serves as a fundamental scale for the interaction, and
so it serves as a multiplicative constant. The scaling as 1/c is introduced
for convenience of units for Aµ . The structure Aµ dx

µ is mandated by the
requirement that the action be a scalar in relativity. Thus

Smf = −q
c

∫ b

a

Aµ dx
µ (2)

defines the matter interaction term for the action in which a charge responds
to an electromagnetic field. Note that L&L use e to represent general q .

The aim is to determine what Aµ is. It is called the four-potential, and
its contravariant and covariant forms are composed of elements

Aµ = (φ, A) and Aµ = (φ, −A) , (3)

where φ is the scalar potential, and A is the vector potential. The
action then distills into separate space and time integrations, and if we set
v = dr/dt as the velocity of a particle whose motion we are considering, then

S =

∫ b

a

(
−mcds+

q
c

A · dr− qφ dt
)

(4)

=

∫ tb

ta

(
−mc

2

γ
+
q
c

A · v − qφ
)
dt

2



From this, we directly infer the form of the Lagrangian for electromagnetism
plus relativstic mechanics in pseudo-covariant form:

L = −mc
2

γ
+
q
c

A · v − qφ . (5)

It then follows that the corresponding Hamiltonian is

H = v · ∂L
∂v
− L = γmc2 + qφ . (6)

Thus, A can do no work, but φ can.

• This formalism routinely maps over to the quantum domain with the
simple operator substitution p→ −i~∇ .

We can transform this Lagrangian to formulate it in truly covariant form.
For such, when writing down an action, we want both space and time on an
equal footing. This is most compactly done by setting dxµ → uµds in the
expression for the action in Eq. (1). We then define the new Lagrangian as
the integrand of an integral over ds , which is then automatically in covariant
form, thereby introducing a time dilation factor of γ in the revised definition.
Yet one more subtlety is important. The mechanical part must retain the
same velocity structure as before, at least in clever disguise. We define the
fully covariant Lagrangian of a charge in an electromagnetic field to be

L = mc2
√
uµuµ + qAµ u

µ . (7)

This leverages the trivial result uµu
µ = 1 , but retains implicit four-velocity

dependence when derivatives are formed. Clearly L = −γL , and the change
of sign is immaterial to what follows. Without formal proof (coming shortly),
we assert that covariant equations of motion are obtained using

d
ds

(
∂L
∂uµ

)
=

∂L
∂xµ

, (8)

which are the fully covariant Euler-Lagrange equations. A result of
this form will become apparent when the electromagnetic field tensor F µν is
addressed shortly; it will facilitate an elegant derivation of the form of F µν .
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2 Equations of Motion for Charges

Returning to our three-space formulation of the Euler-Lagrange equations,
we will use them to derive the vector equation of motion for a charge in an L&L

Sec. 17electromagnetic field. for q→ r , we have

d
dt

(
∂L
∂v

)
=

∂L
∂r

. (9)

Using Eq. (5), we consider first the RHS with A = A(r) , φ = φ(r) and v
fixed at a particular point in spacetime. Then

∂L
∂r

= ∇L =
q
c
∇(A · v)− q∇φ . (10)

Herein, all ∇ operators possess partial derivative character. The vector po-
tential term is manipulated via a standard identity in vector analysis:

∇(A · v) = ���
��(A · ∇)v + (v · ∇)A + v × (∇×A) +((((

(((A× (∇× v) . (11)

Since the velocity does depend on r explicitly, terms involving derivatives of
it are zero. Thus, the RHS of the Euler-Lagrange construction becomes

d
dt

(
p +

q
c
A

)
=

∂L
∂r

=
q
c

{
(v · ∇)A + v × (∇×A)

}
− q∇φ . (12)

As in the absence of the E/M field, the derivative of the −mc2/γ term in the
Lagrangian yields p . Now, the total time derivative of the vector potential
on the LHS consists of two contributions: (i) the explicit ∂A/∂t part, and
the implicit variation contained in the displacement dr = v dt due to the
charge’s motion. This yields

dA
dt

=
∂A
∂t

+ (v · ∇)A . (13)

This construction is termed a convective derivative, and is commonly
seen in fluid dynamic theory. Cancellation of identical terms on each side
now emerges and the result is

dp
dt

= −q
{

1
c
∂A
∂t

+∇φ
}

+
q
c

v × (∇×A) . (14)

This is the desired equation of motion for the charge.
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The force consists of two parts on the RHS, the first being independent of
the velocity of the particle, and proportional to the charge. The ratio of the
two is defined to be the electric field intensity:

E = −1
c
∂A
∂t
−∇φ . (15)

The second part of the force is proportional to the velocity, but is always
perpendicular to it. Thus we define the magnetic field intensity:

B = ∇×A . (16)

A general electromagnetic field is thus a superposition of an electric and a
magnetic field. The equation of motion then assumes the form

dp
dt

= q

{
E +

v
c
×B

}
, (17)

which is termed the Newton-Lorentz force equation.

• It is immediately apparent that adding a constant to either φ or A
will not alter the electric and magnetic fields. This provides a lead-in to the
discussion of gauge transformations shortly.

The rate at which the energy of a charge changes in an electromagnetic field
is simply determined. Forming a scalar product of the velocity with the force,

dE
dt

= v · dp
dt

= q v · E → dEK
dt

. (18)

Here EK = (γ − 1)mc2 is the kinetic energy. Observe that a magnetic field
does no work on a charge: only the electric field change its energy. The work
done over a space interval dr is thus dW = qE · dr .

5




