
2.2 Energy-Momentum Distribution Functions

Having forged a cohesive formalism for coupling energy and momentum in
relativity, for the purposes of determining interaction probabilities and rates L&L

Sec. 10for collisions and decay of relativistic species, we need to discuss distribu-
tion functions. These are also central to thermalization considerations, and
are germane to relativistic Maxwell-Boltzmann distributions and also Planck
spectra — they form a basis for extension to quantum theory (i.e. QED).

The first distribution function to be discussed is the 3D momentum space
distribution function f(p) , which when integrated gives the total number
N of particles in a system:

N =

∫
f(p) d3p ≡

∫
f(p) dpxdpydpz . (33)

This number is clearly a Lorentz invariant. To ascertain the Lorentz boost
dependence of the distribution, we leverage our considerations so far of spatial
coordinates:

d4x = cdt dx dy dz = γc dτ dV = Lorentz invariant , (34)

where γ is the boost Lorentz factor between the K and K ′ frames, and
we know that dV transforms as 1/γ in such a boost (length contraction).
Therefore d4x is a Lorentz invariant. So too is any four-volume element
formed from a bona fide four-vector. Thus,

d4p ≡ dp0 dp1 dp2 dp3 =
dE
c
dpx dpy dpz = Lorentz invariant . (35)

Due to the normalization of the four-momentum vector, the integrations are
not all independent, and so must be weighted by a delta function, which
must capture energy/momentum conservation. The connection between co-
variant and non-covariant forms is made via manipulation of the δ function:∫
δ
(
pµp

µ −m2c2
)
d4p → c

2

∫
δ
(E2
c2
− p2 −m2c2

)
2E dE
c2

d3p
E →

∫
c d3p
2E ,

(36)
as the energy integration is now trivial. Since the LHS is manifestly invariant,
so also is d3p/E Lorentz invariant.
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The 4D momentum distribution function can be defined and related to the
3D one:

N =

∫
f(pµ) d4p with f(pµ) ≡ f(p)

2E
c
δ
(
pµp

µ −m2c2
)

(37)

in covariant form. The need for the 2E/c factor in Eq. (37) is obvious, by
virtue of Eq. (36).

If we consider two frames K and K ′ in which a particle is moving, then
defining the K0 frame as the one in which the particle is at rest, we can
write down the energies and differential volume elements in the K and K ′

frames:

dV =
dV0
γ

, dV ′ =
dV0
γ′

(38)
E = γ mc2 , E ′ = γ′mc2 .

Here dV0 is the proper volume element in the particle’s rest frame, and
γ = 1/

√
1− V 2/c2 , etc. The energy boosts exactly compensate the length

contraction. Accordingly, given the Lorentz invariance of d3p/E , we can
assert that

d3p d3x (39)

is a Lorentz invariant, as is EdV = mc2 dV0 . This is a direct consequence of
x and p being conjugate variables in Hamiltonian formalism. From

N =

∫
f(x, p) d3p d3x (40)

it follows that the phase space density f(x, p) is also a Lorentz invariant:

f ′(x′, p′) = f(x, p) . (41)

This is the quantity that is used by heliospheric space physicists when mea-
suring solar wind particles with spacecraft detectors.
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• As an example of the extrapolation of this formalism to quantum me-
chanics, an electromagnetic contribution to the Hamiltonian must scale, to
lowest order, linearly with the E/B field. Consider a charge (e.g. electron)
in a uniform magnetic field B. The cyclotron frequency is ωB = eB/mc .
This yields a quantum energy scale ~ωB = e~B/mc so that

eB~c ∼ (mc2)2 ∼ (pc)2 (42)

defines the square of an energy scale. Since the electromagnetic correction to
a Lagrangian/Hamiltonian does not yield translational invariance perpendic-
ular to B, the two transverse momentum dimensions are quantized leading
the Landau levels in energy, thereby introducing a quantum number n . Thus

p⊥ ∼
√
eB~
c

⇒ d3p ≡ 2πp⊥dp⊥ dpz → 2π
eB~
c

dpz
∑
n

(43)

defines the phase space element for charges in QED in external B fields.

3 Relativistic Collisions and Decay

In space physics, astrophysics and particle physics, collision integrals are fre-
quently employed and a core element controlling their evaluation concerns the
relativistic kinematics of various interactions. We will consider two common
examples: particle decay and two-body collisions.

3.1 Decay of Particles

Consider a spontaneous decay of a species into two particles, M → 1 + 2 .
The masses of these will be denoted M , m1 and m2 . Energy conservation L&L

Sec. 11dictates that M ≥ m1 + m2 . Conservation of pµ in this decay constrains
both the energy and momentum. The simplest case is the decay of a particle
at rest in the centre of momentum (CM) frame (in units of c = 1 ):

M = E1 + E2 , p1 + p2 = 0 . (44)
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As the 3D momenta are equal and opposite, one has

E21 −m2
1 = E22 −m2

2 ⇒ E21 − E22 = m2
1 −m2

2 . (45)

These can be combined with the mass/energy identity to give

E1 =
M2 +m2

1 −m2
2

2M
, E2 =

M2 +m2
2 −m2

1

2M
, (46)

from which the magnitude p = |p1| = |p2| of the vector momenta can be
deduced:

4M2 p2 =
(
M2 − (m1 +m2)

2
)(
M2 − (m1 −m2)

2
)

. (47)

This is clearly a Lorentz invariant, so that it can be used to determine the
momenta and energies of the decay products for moving masses M .

Plot: Draw diagram of free decay into two species

• An example of a reaction to which this applies is π0 → γγ , so that the
photon momenta are p = E/c = mπ/2 , i.e. around 67 GeV/c. Discuss SNR
and cosmic ray context in the light of Fermi-LAT discoveries.

If the decaying mass is actually in flight, the energy and momenta are most
simply determined by a Lorentz transformation from the mass’s rest frame
Then, the vector direction of the decay product momenta samples an isotropic
distribution (unless there is an external E or B field). Once this direction is
determined probabilistically, the boost can be applied to specify all quantities
in the laboratory (L) frame.

∗ The distribution of rest frame momentum angles defines a flat-topped
distribution of the energies of the decay products in the L-frame.

Plot: π0 Gamma Rays from Supernova Remnants

• A second example is π± → µ±νe , as is prolific in the CMS detector at
the LHC. Talk about IceCube and detection of atmospheric neutrinos as a
background signal to VHE cosmic ν observation.

∗ Also discuss n → p + e− + νe , for which measurement precision is
sufficient to prove the existence of the neutrino through missing momentum,
but insufficient to measure its small mass, only bound it.
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p0 Gamma-Rays from Supernova Remnants

• Top: Ackermann et al. (Science 
2013): Fermi-LAT sees down to 
60 MeV with 4 years of data.

• Bump seen at same energies 
near 67 MeV in 2 remnants.

• Inferred cosmic ray proton 
distribution is curved (left).



3.2 Invariant Cross Section

Collisions of particles are characterized by their invariant cross sections
σ , which determine the number of collisions between beams of interacting L&L

Sec. 12particles. The collision rate can be cast in the familiar form

dN = σ vreln1n2 dV dt , for dV dt = d4x . (48)

Here ni are the number densities of the colliding species, and vrel is their
relative speed. This rate is nominally written in the rest frame of one of the
species, say particle 2, and thus is not yet covariant.

We seek to extend this to a fully covariant form, noting that neither n1 nor
n2 is a relativistic invariant. However, dN is a true scalar, as the total
number of particles cannot vary from frame to frame. Thus we posit

dN = An1n2 dV dt , (49)

with the goal of determining the coefficient A so as to render this expression
covariant, with A → σvrel in the rest frame of one of the species. Clearly
An1n2 must be a Lorentz invariant.

If n0 and dV0 are the number density and volume element of one species in
its rest frame, then the number n dV = n0 dV0 is a Lorentz invariant. Thus

n = γn0 (50)

defines the density compression in a Lorentz boost.

• We already know that E = γE0 = γmc2 gives the energy relationship
to the rest frame, so it follows that AE1 E2 must also be a Lorentz invari-
ant. This is a convenient equivalence because we can now work with four-
momentum variables. Scaling this by the four-momentum scalar product
p1µp

µ
2 , we arrive at an invariant (in units of c = 1 )

A E1E2
p1µp

µ
2

= A E1E2
E1E2 − p1 · p2

= const. = σvrel (51)

The evaluation of the constant is achieved in the rest frame of either particle,
and so is just σ times the relative speed. Therefore we have found A .
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To give the collision rate expression its final form, we need to express the
relative velocity vrel = βrelc in both covariant and vector form. In the rest
frame of either particle, since γ = (1− β2

rel)
−1/2 is the Lorentz factor of the

moving particle, as p1 · p2 = 0 ,

p1µp
µ
2 =

m1m2√
1− β2

rel

⇒ βrel =

√
1−

(
m1m2

p1µp
µ
2

)2

. (52)

This is the covariant form. To realize a vector form, for general frames,

p1µp
µ
2 = E1E2 − p1 · p2 = γ1γ2m1m2(1− β1 · β2) , (53)

and this can be used to re-express the relative speed:

βrel =

√
1− (1− β2

1) (1− β2
2)

(1− β1 · β2)
2 ≡

√
(β1 − β2)

2 − (β1 × β2)
2

1− β1 · β2

. (54)

The second form is obtained by using standard vector identities.

Assembling all the various pieces, the reaction rate can be written in co-
variant form thus:

dN = σ c

√
(p1µp

µ
2)2 −m2

1m
2
2

E1E2
n1n2 dV dt , (55)

with n1n2/(E1E2) being a Lorentz invariant, or equivalently in vector form

dN = σ c
√

(β1 − β2)
2 − (β1 × β2)

2 n1n2 dV dt . (56)

This form was derived by Wolfgang Pauli in 1933. If the two velocities are
collinear, as they are in CM frame collisions, then β1×β2 = 0 , and the rate
is proportional to a familiar Galilean relative velocity factor |β1 − β2| c .
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