e In every tensor equation (e.g. Maxwell’s equations — to come), all terms
must contain identical and identically-placed (i.e., raised or lowered) free
indices, as opposed to dummy indices that are summed over. Free indices
can be shifted up or down to derive alternative forms of the tensor equation,
but such operations must be executed simultaneously to all terms.

The property that tensors map like products of 4-vectors under Lorentz trans-
formations immediately identifies the transformation relations for a 4-tensor
in boosting between the K and K’ frames:

T, — oz, T ox,

8l'la aﬁm = Az Tclzﬁ Af ’ (59>

where the primes denote evaluation of quantities in the K’ frame.

x Observe that the combined pre- and post-multiplication protocol by
Lorentz boost matrices is needed in order to preserve proper manipulations of
tensor operations on vectors. This is immediately deducible by constructing
the tensors as products of column and row vectors.

x Observe also that the boost transformations are also rank 2 tensors,
and the placement of the indices, covariant in both Jacobian denominators,
yields contravariant a and § indices in the corresponding A . This preserves
the signs of the space elements to the A that are present in Eq. (45).

e One can form scalars from tensors, just as we did for 4-vectors, by sum-
ming over the indices. This reduces the number of free indices in an operation
called index contraction, an example of which is

T =) T (60)

which forms the trace of the tensor matrix. In general, contracting any pair
of indices reduces the rank of a tensor by 2.
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5.1 Special Tensors

Two special tensors are now introduced. The first is the unit 4-tensor 0,

1 if u =v
o = ’ ’ 61
v {0 ,ifu #F v (61)
This evinces the property that for any four-vector A",
orA” = A" . (62)

One can then raise or lower the indices of this tensor to obtain the metric
tensor (¢" in contravariant form, g,, in covariant form). In flat spacetime,
the metric tensor assumes the familiar Minkowski metric form

1 0 0 0

) 3} 0 -1 0 0
g,u = Gw = 77# = 0 0 1 0 = Nw - (6?))

0 0 0 -1

This now serves as the index raising and lowering operator for 4-vectors:

gaﬂAﬂ = Aa ’ gaﬁAﬂ = A®

(64)
AYA, = gogA“A° = gPAL A
e These tensors are invariant under Lorentz transformations:
G = ANl gas AL . (65)

This special property is easily confirmed using Eq. (45) for the flat spacetime
case ¢ — M, and is a result that applies in all coordinate systems, for
example Cartesian and spherical polar configurations.

e This invariance suggests that metric tensors are tied to the spacetime
geometry. Consider now the space four-vector A¥ — dx” . Then we have

ds? = da’dv, = gapda®da’® | (66)

which is the differential form of Eq. (36) for flat spacetime. In a gravitational
field, g, no longer assumes this simple form, and can in fact be non-diagonal,
for example capturing the frame-dragging arising in the rotating Kerr metric.
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e Another useful special tensor is the completely antisymmetric unit
tensor of 4th rank, €*#7° . This is the tensor whose components change
sign under the interchange of any two indices. This antisymmetry constraint
render all components with two identical indices necessarily zero. The nor-
malization property sets its nonzero components to be +1.

* Yet we still have a freedom of overall sign, so we set €123 =1,

x There are a total of 24 non-vanishing components out of the 256.

[Reading Assignment: Pages 17-18 on the antisymmetric unit tensor]

5.2 Anti-symmetric Tensors

e An anti-symmetric tensor has 12 nonzero components, and the antisym-
metry constraint yields only six independent elements. Therefore, we can
write it in the form

0O p: Dy D2

TH  — —Dz 0 —a, ay (67)
—py Q. 0 —ag ’
—p. —Qy Ay 0

without loss of generality. This implies that the tensor can be considered as
being constructed using two purely spatial vectors, p and a. We represent
this as two sets, one for each of the covariant and contravariant forms:

™= (a , Tw=I(Ppa . (68)

If we perform a reflection of all the spatial coordinates, then the components
with a single time index (0) switch sign, but those with two spatial indices
(i.e. no temporal ones) do not. This is tantamount to the vector p reversing
directions under reflections (odd parity); it is then called a polar vector
(hence the symbol).

x Examples of polar vectors in physics include linear momentum p and
the electric field E (e.g. in a dipole configuration).
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On the other hand, the a vector does not change signs under such a reflection
operation (even parity). If it were a linear superposition of two polar vectors,
it would then itself be polar. Instead, what if it is the cross product of two
vectors: a =Db x c¢? If both b and c are both polar, then a does not change
sign under this inversion, reproducing its even parity. It is then termed an
axial vector (hence the symbol).

Polar and axial vectors under 1D reflections

x Angular velocity vectors w X r describing rotations, orbital angular
momentum L =r X p, and the magnetic field B =V x A are examples of
axial vectors.?

The cross product serves as a convenient representation of axial vectors, since
then the purely spatial elements of the tensor assume a form a; = b;c; —bj;c;
for cyclic permutation of the indices ¢, 7, k — x,y, z. This then re-distributes
the spatial indices in the positions that exactly match the a; elements given
in T above. We emphasize that this is not a unique choice, but it is a
convenient one for electromagnetism, for which cross product structure in
the form of curls appears in the field equations.

x Thus, we expect that the fundamental tensor for electromagnetism
will be anti-symmetric, with the electric field components occupying the p
elements and the magnetic field components occupying the a elements.

e Any tensor 7), can be decomposed into the sum of its symmetric,
(T, +1T,,)/2, and anti-symmetric, (7}, —7,,)/2 parts. These parts can of-
ten constitute different physical content within one umbrella description, an
example being the matter and electromagnetic components of the relativistic
energy-momentum tensor.

3See the Feynman Lectures at http://www.feynmanlectures.caltech.edu/I_52.html
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Polar and Axial Vectors

Credit. Damay 2015 J. Phys. D: Appl. Phys. 48 504005
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5.3 Differentiation and Integration

It is straightforward to generalize the gradient operation to posit a four-
gradient of a scalar function ¢:

_ 99 _ (109
8,u¢ W - (E E? V¢) )

o = PO = (%% —w)

oz,

(69)

These are respectively in covariant and contravariant forms, and define true
4-vectors. Observe the shorthand notation of the differentiation. Lorentz
transformation of such forms will dictate their use as a compact tool for
representing key results in electrodynamics.

e We can also differentiate four-vectors, and provided that we maintain
familiar protocols with the indices, the result is either a scalar or a tensor.
We usually differentiate a contravariant 4-vector using a covariant derivative,
and this is the four-divergence:

0A*

Such forms will eventually appear in our covariant construction of Maxwell’s
and other electrodynamic equations.

L&L talk about four types of integrations that can be constructed using
spacetime dimensions. These increase in dimensions. The simplest is just an
integral over a curve in four-space, so that the element of integration is just
the line element, i.e. dx,. For the others, L&L appeal to our familiarity
with 3D spatial integrations, and analogies extend to spacetime. In general,
the integration elements are Jacobians for the coordinate transformation
from the curvilinear surface involved to the projected plane in the restricted
dimensions. For example, in 2D, one integrates using a surface element

dx, dzl,

S0 = dzg dry

= drodry — drdrg (71)

employing the familiar determinant notation for the Jacobian. N.B. primes
here denote alternative coordinate basis as opposed to another inertial frame.
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In 3D, the surface element projection is also a determinant:

dxr, dxl, dx
dSapy = | dvg dxjy drj . (72)
dz, dz! dxf

This is a tensor of rank 3, antisymmetric in all indices.
e The last is an integral over a four-dimensional volume,
d*z = do’dx'dr?de® = cdtdV . (73)

The is clearly a scalar due to the compensation between time dilation and
length contraction. For this reason, it is often convenient to express 3D
integrals as 4D ones with delta functions in the integrands, as needed.

To prove that it is a scalar, i.e. d*z is a Lorentz invariant, we observe that
d*z = Jd'a’, where the Jacobian for the x, — ], transformation, i.e.

(9950 c%o 8x0 8950
dry 0x) Ory Ol
8.361 8;1:1 8371 8331
Jxy Oxy Oxy Oy
8:102 8.1'2 3962 8952
dxy Oxy Oxy Oy
8333 0:173 61‘3 8$3

/ / / /
Oz, 0xy Ory Oxy

Each of the elements of this determinant is a constant because of the lin-
earity of the form of Lorentz transformations. The determinant can be ex-
pressed as a product of simpler determinants corresponding to rotations in
two coordinates:* the overall transformation is a sequence of more elementary
Lorentz boosts and rotations. These more elementary rotations in 4D space-
time clearly have determinants equal to unity as all rotations do, whether
they involve real or imaginary angles. Thus d*z is a Lorentz invariant under
generalized rotations.

[Reading Assignment: Pages 20-21 of LEIL: types of spacetime integrations|

4This is easily discerned for boost matrices in the (z, t) plane.
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2. RELATIVISTIC DYNAMICS

Matthew Baring — Lecture Notes for PHYS 532, Spring 2023

1 Lagrangian and Hamiltonian Mechanics

To set the scene for our consideration of relativistic dynamics, we offer first
a brief review of classical Lagrangian and Hamiltonian mechanics. This for-
malism is based on a variational principle that provides a powerful tool
for describing dynamics of complex systems of particles. The starting point
is that a special quantity called the action, S, when minimized, defines the
trajectory of a system (or particle) in generalized co-ordinate space ( q;, q; ):

ty
58 =0 for S = Z/ L(q;, §;, t) dt
i Vta

(1)

This constrains the equation of motion between points a and b at times
t, and t,. Here L is the Lagrangian, which has units of energy, and nom-
inally serves as the kinetic energy (for a free particle). The action integral
is evaluated for various functional forms for q; and q; = dq;/dt.

Sketch a range of paths

Eq. (1) embodies Hamilton’s Principle, or the principle of least action
(L&L terminology), which states that the actual motion occurs when S is
minimized and 05 = 0. The immediate consequence of this principle is that
one can determine the equation of motion, the Euler-Lagrange equations.

x Usually, ¢; represents the position of particle 7, so that its derivative
describes the velocity of the particle.



Consider the simpler case of one set of canonical variables, ¢ and ¢. Let ¢(t)
be the variational solution for the actual trajectory. Consider perturbations
about this equilibrium solution, ¢ — ¢ + 0¢ and ¢ — ¢ + d¢. Fix the
endpoint values at points a and b, so that no variations arise due to them,
thereby fixing dq(t,) = 0 = dq(ty) . The variation in the action becomes

ty ty
55 = / L+ 6q, 4+ 64, t)dt—/ Lg 4 t)dt . 2)
ta ta
A Taylor series expansion of the integrand in the first integral then yields

tp
B oL . OL ..
0SS = /ta (a—q(Sq—{—@—q(Sq) dt . (3)

Since 0¢ = d(dq)/dt, we can integrate the second term by parts:

t ty t
oL ( d oL / d (8L)
L) dt = |2 6g| — S22 ) sqdt 4
/ta &z (dt q) L‘)‘q QL W dE\97) ™ W

The first term on the RHS is identically zero since the endpoints are fixed.
The variation of the action then takes the form

t
*fd (0L OL
s = = [ {a (50) -5 e ?

which can only be zero if the factor in curly braces is zero. Accordingly,
d (9L _ oL
dt \oq )  0q
(6)

which define the Euler-Lagrange equations (E-L) of motion; this result
has been routinely extended to the more general vector form.

e If L has the dimensions of energy and ¢ the dimensions of length, then
each term in the E-L result has the dimensions of force. Accordingly, define

oL
= 74 (7)

to be the canonical momentum, conjugate to the space variable q. We
can explicitly solve this for q(p).



e This should be familiar from quantum theory. Equations of motion
for a system intimately couple distance and momentum, which in a Fourier
representation leads to the appearance of complex exponentials of the form
exp{i(p - x)/h} . Eventually, the extension of this to four-vector formalism
automatically implies additional time-dependent factors exp{—iFt/h} .





