
3.1 Transformation of Velocities

To prepare the way for future considerations of particle dynamics in special
relativity, we need to explore the Lorentz transformation of velocities. These L&L

Sec. 5are simply derived from our spacetime transformation equations. Let a body
be traveling with speed vx = dx/dt in the K frame, and v′x = dx′/dt′ in
the K ′ frame. We have, again

x = γ
(
x′ + βct′

)
, y = y′ , z = z′ , t = γ

(
t′ +

βx′

c

)
, (29)

where γ = 1/
√

1− V 2/c2 captures the relative velocity V of the two frames,
parallel to the x and x′ axes. Dividing the spatial equations through by the
temporal one, and defining vector velocities by

v =
dr
dt

, v′ =
dr′

dt′
(30)

we find

vx =
v′x + V

1 + v′x V/c
2 , vy =

v′y
γ (1 + v′x V/c

2)
, vz =

v′z
γ (1 + v′x V/c

2)
(31)

as the Lorentz transformation for the three velocity components. This clearly
reduces to the familiar Galilean transformation form when V � c .

∗ Observe that in general, the velocity components transverse to the
boost decline since time is dilated: as V → c , vy → 0 and vz → 0 .

∗ The inverse relations interchange v and v′ and set V → −V .

∗ In the case of light propagation, v → c , the denominators have im-
portant consequences in radiation theory, e.g., for Čerenkov radiation.

• Clearly vx is a monotonically increasing function of v′x , with the max-
imum value of vx → c asymptotically realized when v′x → c . Accordingly,
the Lorentz transformations embody the principle that all (massive) bodies
travel less than the speed of light, as perceived by any observer.

• If one tries to form a kinetic energy formula using v2x+v2y+v2z , it quickly
becomes apparent that the algebra becomes messy. This motivates a more
sophisticated representation of spacetime coordinates and velocity, and this
will be realized shortly when four-vectors are explored.
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Suppose now that vz = 0 and set vx = v cos θ and vy = v sin θ , so that θ
represents the angle of the velocity vector to the boost direction. Similarly
define θ′ in the K ′ frame. Then, dividing vy by vx , the velocity Lorentz
transformations yield

tan θ =
vy
vx

=
v′y

γ (v′x + V )
≡ v′ sin θ′

γ(v′ cos θ′ + V )
. (32)

This clearly exhibits the property that the velocity vector v′ collapses to-
wards the boost direction ~V due to the motion of the K ′ frame, when
viewed from the K frame, provided that 0 ≤ θ′ ≤ π/2 . For obtuse angles,
the opposite behaviour is observed.

∗ This property defines relativistic beaming that is commonplace in
astrophysical settings. It explains why relativistic outflows emanating from
supermassive black holes are so luminous.

For light, we can set v′ → c , and write β = V/c . Then

cos2 θ =
1

1 + tan2 θ
=

γ2(β + cos θ′)2

γ2β2 + 2γ2β cos θ′ + γ2 cos2 θ′ + 1− cos2 θ′

(33)

=
γ2(β + cos θ′)2

γ2 + 2γ2β cos θ′ + γ2β2 cos2 θ′
=

(β + cos θ′)2

(1 + β cos θ′)2
,

using the indentity γ2β2 + 1 = γ2 , from which one can quickly deduce
formulae for the relativistic angular aberration of light (direction change):

cos θ =
cos θ′ + β

1 + β cos θ′
, sin θ =

sin θ′

γ(1 + β cos θ′)
. (34)

These results can also be obtained directly from the velocity Lorentz trans-
formation. They appear, albeit disguised, in the mathematical structure of
the Klein-Nishina cross section for Compton scattering.

• This changing of the direction of light when viewed from different inertial
reference frames is a direct consequence of the postulate of the constancy of
the speed of light.
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4 Four Vectors in Spacetime

It is time to establish a more sophisticated mathematical formalism for deal-
ing with spacetime manipulations.

Start with the spacetime coordinate position four-vector xµ , defined by L&L
Sec. 6

xµ = (x0 = ct, x1 = x, x2 = y, x3 = z) . (35)

Here the use of Greek indices denotes four-vectors. The magnitude of this
four-vector is given by the line-element length

s2 ≡ xµx
µ = (x0)2 − (x1)2 − (x2)2 − (x3)2 . (36)

This, of course, is a Lorentz invariant, and we therefore term it a scalar.
The product notation resembles the dot product in 4D if we define

xµ = (x0 = ct, x1 = −x, x2 = −y, x3 = −z) . (37)

Both xµ and xµ are two forms representing the same quantity. We call xµ

the contravariant form and xµ the covariant version. The dot product
form then obeys the Einstein summation convention, namely that

xµx
µ ≡ xµxµ →

3∑
µ=0

xµxµ ; (38)

all indices appear twice (µ here) are summed over. This is also termed the
scalar product of the contravariant and covariant spacetime four-vectors.

The Lorentz transformation has the property that it preserves the magni-
tude of differential spacetime elements, dxµ :

dxµdx
µ = dx′νdx

′ν with dxµ =
∂xµ

∂x′
ν dx

′ν . (39)

This constraint is imposed by the fixed value of the speed of light in all
inertial reference frames, the fundamental premise of special relativity.
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For simplicity, consider velocity boosts of magnitude βc in the x1 direc-
tion, with |β| < 1 . Given the form of Eq. (36), as was discerned in Sec. 3,
a single parameter description of boost invariance is provided by hyperbolic
functions, with x0 ∝ coshψ and x1 ∝ sinhψ , and β = tanhψ . Here
γ ≡ 1/

√
1− β2 = coshψ . One way to facilitate the Lorentz transformation

algebra is via a matrix construction. Representing the 4-vectors as column
matrices, then the boost equations can be compactly expressed via

x0

x1

x2

x3

 =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

 ·


(x0)′

(x1)′

(x2)′

(x3)′

 . (40)

The covariant form of this can be quickly cast in terms of row-vectors. It
naturally must involve a matrix describing the inverse Lorentz transformation
matrix, which sends β → −β , and this path can be used to establish the
Lorentz invariance xµx

µ = (xµ)′ (xµ)′ .

• We can extend this structure to other four-vectors (4D vectors) and ar-
rive at a Lorentz invariance scalar product if we ascribe to the four-vector
the same Lorentz transformation properties that are satisfied by the space-
time coordinates under boosts. This now becomes a matter of definition: we
define a four-vector Aµ to be a 4D vector that obeys (contravariant form)

A0 = γ
[
(A0)′ + β(A1)′

]
, A1 = γ

[
(A1)′ + β(A0)′

]
(41)

A2 = (A2)′ , A3 = (A3)′ .

This applies here specifically for boosts in the x1 direction, but can be
routinely generalized to arbitrary boosts. The covariant form is obtained
from

A0 = A0 , A1 = −A1 , A2 = −A2 , A3 = −A3 , (42)

and automatically obeys the Lorentz transformations. Thus,

AµA
µ ≡ AµAµ =

3∑
µ=0

AµAµ = (A′)µ (A′)µ (43)

is a Lorentz invariant (show this algebraically from Eq. 41).
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Eq. (43) expresses the square of the magnitude, or length of the spacetime
4-vector Aµ . It does not have to be real. If it is real, i.e. AµA

µ is positive,
then this 4-vector is called timelike, contrasting AµA

µ < 0 cases where Aµ

is termed spacelike. A 4-vector that is of zero length is called a null vector.

The inner product or dot product of two four vectors Aµ and Bµ is simply
defined by the summation

AµB
µ ≡

3∑
µ=0

AµB
µ , (44)

and can be positive or negative.

• The matrix formulation affords a routine protocol to efficiently and ac-
curately compute Lorentz transformation of four-vectors.

• The Lorentz transformation matrix is just a Jacobian:

Λµ
ν ≡

∂xµ

∂x′
ν =


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1

 =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

Λ1
0 Λ1

1 Λ1
2 Λ1

3

Λ2
0 Λ2

1 Λ2
2 Λ2

3

Λ3
0 Λ3

1 Λ3
2 Λ3

3

 . (45)

Observe that the first index, µ , in Λµ
ν corresponds to the matrix row num-

ber, while the second, ν , marks the column number. This is established via
the construction in Eq. (40). One can then apply this matrix protocol to
sequential Lorentz boosts since the chain rule for differentiation is operative
for the two coordinate transformation functions xµ(x′σ) and x′σ(x′′ν) :

dxµ =
∂xµ

∂x′
ν dx

′ν =
∂xµ

∂x′
σ
∂x′

σ

∂x′′
ν dx

′′ν (46)

(remember that the Einstein summation convention applies here) which cor-
responds to a composite boost:

Λc → Λµ
σ Λσ

ν . (47)

This matrix manipulation technique appears extremely useful for 4-vectors:
we will find it also so for tensors, our incipient focus.
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• Observe that the Lorentz transformation matrix Λµ
ν is symmetric and

has a determinant equal to unity. This unit determinant is a general property
of boost matrices, because all such boosts constitute a sequence of rotations
in spacetime, and all rotations preserve volume elements and solid angles.

• L&L use Roman letters for the 4 spacetime indices and Greek for the
purely space ones, the opposite of the widely-used convention employed here.

• Four-vectors will be useful in expressing spacetime quantities that are
related and combine to define Lorentz invariants. Examples include the four-
momentum, pµ = (E,p) and the four-vector potential Aµ = (φ,A) .

4.1 Four-velocity and Four-acceleration

To serve as an immediate example of a four-vector, we generalize the ordinary
3D velocity v to define the four-velocity uµ of a particle via L&L

Sec. 7

uµ =
dxµ

ds
for ds = c dt

√
1− v2

c2
= cdτ . (48)

Here τ ≡ t′ is the proper time, evaluated in the K ′ frame in which the
particle is at rest. Therefore the Lorentz factor of the particle is

γ =
1√

1− v2/c2
≡ coshψ , (49)

so that ds = cdt/γ . The x -component of the four velocity is

u1 =
dx

c dt
√

1− v2/c2
= γ

vx
c

. (50)

Here the v pertains to the total particle speed, not just vx , since the time
dilation factor is pertinent to the boost to the particle rest frame. Similar
results ensue for the other velocity components. In compact form,

uµ = γ
(

1, β v̂
)
≡ γ

(
1, β

)
, β =

v
c

, (51)

with v̂ = v/v as the unit vector in the direction of the velocity of the particle,
as measured in the observer’s frame.
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• Since dxαdx
α = ds2 , one simply has

uµu
µ ≡ dxµdx

µ

ds2
= 1 , (52)

i.e. the 4-velocity always has unit length that is therefore a Lorentz invariant.
This just expresses the constancy of the speed of light in yet another form.
Consequently, the components of the four-velocity are not independent.

∗ The “normalization condition” uµu
µ = 1 extends also to general rel-

ativity, where one generalizes the covariant form uµ = gµνu
ν for gµν 6= ηµν .

It is now routine to extend the definition of acceleration also to define a
second derivative of the spacetime 4-vector as the four-acceleration:

aµ =
d2xµ

ds2
≡ duµ

ds
. (53)

Note that L&L use wµ for 4-acceleration. This quantity will prove useful for
the consideration of radiation by accelerating relativistic charges.

• A routine differentiation of the four-velocity normalization condition in
Eq. (52) with respect to path length s promptly yields

0 =
1
2
d
ds

(
uµu

µ
)

=
1
2

(
duµ
ds

uµ + uµ
duµ

ds

)
(54)

=
1
2

(
aµu

µ + uµa
µ
)

= uµa
µ .

Thus, the four-velocity and four-acceleration are always orthogonal. This
result can prove useful when integrating over particle trajectories, and again
is a consequence of the constancy of the speed of light.

• L&L outline the interesting problem of motion under a constant, uniform
acceleration. The familiar Galilean result x ∝ at2 must fail miserably as c
is approached, and at asymptotically large times, x ≈ ct must result.

[Reading Assignment: Uniform acceleration problem – Section 7, page 24.]
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5 Tensors in Spacetime

We now extend this algebra to define a 4-tensor of rank 2 to be a set of 16
quantities T µν , which under coordinate transformations maps like a product
of two 4-vectors (which are 4-tensors of rank one). One can similarly define
tensors of higher rank, i.e. with more indices. A rank 2 tensor looks like

A0

A1

A2

A3

 · [ B0 B1 B2 B3
]

(55)

This maps out to a 4× 4 matrix, and this will be the natural representation
that will be adopted below for tensors suited to electrodynamics theory.

There are three alternative forms describing a second-rank 4-tensor that ex-
tend the two forms we have encountered for 4-vectors:

T µν : contravariant

T µν or T µ
ν : mixed (56)

Tµν : covariant .

The connection between the different types of components is determined by
the general rule: raising or lowering a space index (1, 2, 3) changes the sign
of the component, while raising or lowering the time index (0) does not. So,

T00 = T 00 , T01 = −T 01 , T11 = T 11 , etc. (57)

Technically, there are two types of mixed components. However, in practice,
these are often identical due to the diagonality of the ηαβ Minkowski matrix,
and so in such cases we represent them without detailed attention to which
index is raised or lowered. We have the relations

T 0
0 = T 00 , T 1

0 = T 01 , T 0
1 = −T 01 , T 1

1 = −T 11 , etc. (58)

A tensor is symmetric if T µν = T νµ , or is antisymmetric if T µν = −T νµ .
Obviously, the diagonal elements of an antisymmetric tensor are all zero.

∗ For a symmetric tensor, T µν = T µ
ν , so we just write it T µν .
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