2.1 Proper time

We now have all the tools to assess how clocks appear to tick for different
observers. Park a moving clock in the K’ frame so that it is stationary
therein, and ticks at time intervals dt’. In the K frame it is moving with
speed V, covering a distance dl = \/dx? + dy? + d2? in time interval dt.
The quantities in the two frames are related via

ds®* = Adt* —dI* = A(dt')* . (13)

The measured time intervals dt obtained by an observer in frame K then
satisfy
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This implies that the K frame observer sees time dilation, i.e. the clock
appears to slow down since dt > dt’. This can also be written

V2
dt = ~dt' 7:1/ 1-—= . (15)

C

Here v > 1 is the Lorentz factor of the relativistic frame transformation
or boost. Integrating over finite intervals, one has
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This interval is unique among all inertial frames, since it pertains to the only
frame in which the clock is at rest. It is therefore called the proper time of
the clock. We all experience the same proper time, even if we are moving.

e Note that by symmetry, since —V is the relative speed/velocity of the
K frame to the K’ frame, an observer in the K’ frame will determine
that an identical clock that is stationary in the K frame will tick slower by

precisely the same time dilation factor, /1 —V2/c?.
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Two Inertial Frames in Relative Motion

K' Frame
y!
K Frame t S9
Ay ds
/VV
>




e There is no conflict here. To actually measure the clock ticks in an-
other frame in relative motion requires the propagation of light from differ-
ent positions. How these positions are established in the two frames when
circumstances are reversed is not a convolution of identical algebraic dilation
factors. See L&L for an explanation.

x If we were to take two clocks initially in the K frame, and move one
to the K’ frame for a while, and then return it to the K frame, one would
not necessarily expect the the two clocks to measure the same time, since
there have been episodes of non-inertial world-line paths for the accelerated
clock. This violates the conditions for special relativity and can be resolved
by general relativity.

World line viewed in two inertial frames.

e Yet we can make an important inference. Along the world line or
spacetime path of a clock, the time interval it reads between two spacetime

points a and b is given by
b
1
E/a dS . (17)

If the clock is at rest for the duration of this spacetime “transit,” then this
defines the proper time interval. If instead the clock moves with a non-
uniform motion starting at @ and ends up at b (in a sequence of timelike
intervals: illustrate this relative to the light cone), as we know that the clock
at rest indicates greater time intervals than a moving one, we deduce that

%/: ds (18)

15 maximized when taking a straight world-line in the 4D pseudo-Euclidean
spacetime, termed Minkowski spacetime. All other paths incur negative
contributions from —(dz? + dy* 4+ dz?) that reduce ds?®.



3 The Lorentz Transformation

It is now time to form the precise relationship between spacetime coordinates
in two inertial frames in relative motion. These should reduce, in the limit
of small boost speeds V <« ¢, to the Galilean transformation:

r=24+Vt ., y=v , z=2 |, t=1t |, (19)

presuming a boost along the x-axis from frame K to frame K’. The central
property is that this transformation must leave all distances unchanged in the
4D z,y, z,ct space. To find the clue to the expedient path, we recast the
differential world line element equation as

ds®* = (cdt)®> + (idz)* + (idy)* + (idz)* . (20)

Now all contributions resemble Euclidean form. Accordingly, by analogy, the
only transformations that preserve lengths are rotations in our 4D hyperspace.

Every rotation in ordinary 3D space can be distilled into a sequence of three
rotations in the x —y, y— 2z and z —x planes. By extension, we can distill
our generalizes spacetime rotation into a sequence of six (= *Cy/2) rotations
inthe xr—y, y—z, z—x, v—t, y—t and z—1t planes. For simplicity, we
will consider boosts parallel to the = and z’ axes, so that only one rotation
need be considered. We then impose

At — a2 = A - () . (21)

This 2D Lorentz invariance criterion can be satisfied only by linear transfor-
mations of the mathematical form

x = 2’ cosht) +ct’ sinhyp | ¢t = ct’ coshyp + 2’ sinhe)p . (22)

It is almost trivial to conclude that these relations satisfy Eq. (21). The
appearance of hyperbolic functions is a direct consequence of the pseudo-
Euclidean nature of spacetime: a substitution @ — i) would generate
trigonometric functions appropriate to rotations in true Euclidean spaces.
Observe that ¥ = (V) is the only possible mathematical dependence.
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To obtain the precise functional dependence for (V'), one considers an
object at rest in the K’ frame. Then 2’ =0 at all ¢, and hence

x = ct' sinhy , ¢t = ct coshy = % = % = tanhty . (23)

We have the solution 1 = tanh™'(V/c), so that if we set = V/c,

coshy = ~v , sinhy = 48 for v = 1 ) (24)

N

The transformation parameter ¢ is called the rapidity. The overall set of
transformation equations is

/
1’=7(I’+50t'), y=vy, z=12, tZW(t/JFBTx)

(25)

This is the form of a Lorentz transformation, which in the limit of small
boost speeds 8 < 1 (for which v — 1), reduces to the familiar Galilean
transformation. The inverse transformation is simply obtained by g — —f.

x Lorentz transformations in general directions can be more easily de-
duced by rotating the coordinate systems first, and employing this form.

The reason underpinning this assertion is that the result of two consecutive
Lorentz transformations depends on the order in which they are performed:
in general, Lorentz transformations are not commutative operators. This
means that the result of a boost of V; followed by a boost by V, differs
from that from Vj followed by Vi. The exception is when the two boosts
are parallel, Vl X Vé =0.

x That this should be true can be inferred from consideration of the
ordering of successive rotations in 3D Euclidean space.

% This non-commutativity distinguishes Lorentz transformations from
Galilean ones where the order does not matter for general vector directions.
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It is now appropriate to illustrate two immediate consequences of the Lorentz
transformations: length contraction and time dilation.

e Consider a rod at rest in the K’ system, parallel to its 2’ axis (L&L
places it at rest in the K system; but we need to be consistent with above).
Let its two endpoints be x] and xf%, so that its length in the K’ frame
is Ax’ = xf, — 2, which is termed the proper length. The endpoints as
discerned in the K frame are x; and x5, and these must be determined
at the same time t therein. Hence, the inverse Lorentz transformation must
be applied and we have

¥y =~ (xl - ﬁct) . Ty = 7y (ZL’Q — Bct) . (26)
Accordingly, the length of the rod as measured in the K frame is
/
Ar = 19— 11 = Af , (27)

and is shorter than the proper length: motion of a moving body contracts
its length along the direction of motion.

* Dimensions transverse to the boost are not length-contracted, so vol-
umes are “compressed” by only one power of the Lorentz factor: V =V'/~.

x Direct measurements of this prediction of special relativity have not
been possible, because macroscopic bodies do not move very fast. Only
subatomic particles do, and these are not amenable to such tests.

Mural honoring Lorentz’s legacy in Leiden

e On the other hand, time dilation is measurable, for example through
nuclear interaction and elementary particle decay channels. The effect emerges
naturally from the Lorentz transformation. Again, our clock is at rest in the
K’ system, and the proper time between two ticks is At = ¢, — ;. The
times t; and t, of the ticks in the K frame are then given by

. _v(taﬂx?) _— _v(tgﬂx'z) (28)

C c

From this one quickly deduces that At =ty — t; = YAt', i.e. that time for
a moving body is dilated.
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A Leiden Mural on Lorentz Transformations

e Public recognition of Hendrik Lorentz’s contributions to special
relativity: a length contraction mural in Leiden, The Netherlands.




3.1 Transformation of Velocities

To prepare the way for future considerations of particle dynamics in special
relativity, we need to explore the Lorentz transformation of velocities. These
are simply derived from our spacetime transformation equations. Let a body
be traveling with speed v, = dz/dt in the K frame, and v/, = dz//dt’ in
the K’ frame. We have, again

/
xz’y(m'%—ﬁaf’), y=v, z=2, tzv(t'—l-ﬁ%) . (29)

where v =1/4/1 — V2/c? captures the relative velocity V' of the two frames,
parallel to the  and 2’ axes. Dividing the spatial equations through by the
temporal one, and defining vector velocities by
dr dr’
= % s V/ = W (30)
we find
/ !/

v, +V v v

— Y — z
L+u vV/E " T 50+ uviE) ) T AV
as the Lorentz transformation for the three velocity components. This clearly
reduces to the familiar Galilean transformation form when V <« c.

(31)

Vpe =

x Observe that in general, the velocity components transverse to the
boost decline since time is dilated: as V — ¢, v, =+ 0 and v, — 0.

x The inverse relations interchange v and v/ and set V — -V,

x In the case of light propagation, v — ¢, the denominators have im-
portant consequences in radiation theory, e.g., for Cerenkov radiation.

e Clearly v, is a monotonically increasing function of v/, with the max-
imum value of v, — ¢ asymptotically realized when v!, — ¢. Accordingly,
the Lorentz transformations embody the principle that all (massive) bodies
travel less than the speed of light, as perceived by any observer.

e If one tries to form a kinetic energy formula using v? —i—vs +v?2, it quickly
becomes apparent that the algebra becomes messy. This motivates a more
sophisticated representation of spacetime coordinates and velocity, and this
will be realized shortly when four-vectors are explored.
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