HOMEWORK PROBLEMS 8 PHYS 516, Fall 2022

PDEs, Green's Functions and Integral Equations
Due date: Friday, 12/2/22-9pm

1. (a) Derive the infinite series solution for Laplace's equation

$$
\begin{equation*}
\frac{\partial^{2} \Phi(x, y)}{\partial x^{2}}+\frac{\partial^{2} \Phi(x, y)}{\partial y^{2}}=0 \tag{1}
\end{equation*}
$$

with the Dirichlet boundary conditions $\Phi(x=0, y)=1, \Phi(x=1, y)=-1$ and $\Phi(x, y=0)=0=\Phi(x, y=1)$.
(b) Write a code that will numerically sum this series to an arbitrary number of terms. Display this solution in 3D for a 50×50 equally-spaced (x, y) grid, for the specific cases of sums to 11,21 and 51 terms. You can use the Mathematica plotting function Plot3D [], or some other graphical tool.

In your plot, do you detect any evidence for the oscillation incurred (known as Gibb's phenomenon) when the Fourier series is truncated at a finite number of terms? Estimate how many terms in the sum are necessary to obtain about 1% accuracy in the solution over most of parameter space.
[28 points credit]
2. Arfken \& Weber Problem 10.5.2. Find the Green's functions for

$$
\mathcal{L} y(x)=\frac{d^{2} y(x)}{d x^{2}}+y(x) \quad, \quad\left\{\begin{array}{l}
y(0)=0 \tag{2}\\
y^{\prime}(1)=0
\end{array}\right.
$$

and

$$
\begin{equation*}
\mathcal{L} y(x)=\frac{d^{2} y(x)}{d x^{2}}-y(x) \quad, \quad y(x) \text { is finite for }-\infty<x<\infty \tag{3}
\end{equation*}
$$

Note that Arfken \& Weber uses a different sign convention for the Green's function from that used in lectures.

- Hint: the differential equation that the Green's function G satisfies may guide you to appropriately normalize G.
[28 points credit]

3. Arfken \& Weber Problem 16.3.9. Solve the Volterra equation

$$
\begin{equation*}
\phi(x)=1+\lambda^{2} \int_{0}^{x}(x-t) \phi(t) d t \tag{4}
\end{equation*}
$$

by each of the following methods:

- reduction to an ODE, finding the boundary conditions;
- the Neumann series;
- the use of Laplace transforms.
[22 points credit]

4. Arfken \& Weber Problems 16.2.3 and 16.2.4.
(a) Show that the solution of a Volterra equation of the second kind

$$
\begin{equation*}
\phi(x)=f(x)+\lambda \int_{0}^{x} k(x-t) \phi(t) d t \tag{5}
\end{equation*}
$$

with the specialized kernel $K(x, t)=k(x-t)$ has the solution

$$
\begin{equation*}
\phi(x)=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} e^{x s} \frac{F(s) d s}{1-\lambda K(s)} \tag{6}
\end{equation*}
$$

assuming that the required transforms exist.
(b) Use the Laplace transform solution of part (a) to solve the two integral equations

$$
\begin{align*}
& \phi(x)=x+\int_{0}^{x}(t-x) \phi(t) d t \\
& \phi(x)=x-\int_{0}^{x}(t-x) \phi(t) d t \tag{7}
\end{align*}
$$

Check your results by substituting back into the original equations.
[22 points credit]

