
3 Neumann Series and Separable Kernels

Two prominent techniques that we outline here are the perturbation theory A&W
Sec. 16.3Neumann series method, and the discrete matrix theory approach for sepa-

rable kernels. Each has their domain of choice, though their efficacy can be
comparable for simple problems.

3.1 Neumann Series Method

The Neumann series technique is usually applied to Fredholm equations with
fixed integration limits, though it can be applied to Volterra equations.

Example 5: To illustrate the Neumann technique, consider the equation

φ(x) = x+ λ

∫ 1

−1
(t− x)φ(t) dt . (34)

The solution is obviously of the mathematical form

φ(x) = αx+ β . (35)

If we try the test solution φ0(x) = x on the RHS, the exact solution for
λ→ 0 , then the first iteration yields

φ1(x) = x+ λ

∫ 1

−1
(t− x) t dt = x+

2λ
3

. (36)

The next two iterations are simply obtained:

φ2(x) = x+ λ

∫ 1

−1
(t− x)

{
t+

2λ
3

}
dt = x

(
1− 4λ2

3

)
+

2λ
3

(37)

φ3(x) = x+ λ

∫ 1

−1
(t− x)φ2(t) dt = x

(
1− 4λ2

3

)
+

2λ
3

(
1− 4λ2

3

)
The process can be continued, and the even iterations assume the form

φ2n = x

{
1 +

n∑
s=1

(
−4λ2

3

)s}
− 1

2λ

n∑
s=1

(
−4λ2

3

)s
, (38)

8



a result that can be demonstrated by induction. The two geometric series
can be summed in the limit n→∞

∞∑
s=1

(
−4λ2

3

)s
= − 4λ2

3 + 4λ2
(39)

to derive the convergent solution:

φ(x) = lim
n→∞

φ2n(x) =
3x+ 2λ
3 + 4λ2

. (40)

If one inserts Eq. (35) directly into the integral equation, one derives

αx+ β = x(1− 2βλ) +
2
3
λα (41)

so that

α =
3

3 + 4λ2
, β =

2λ
3 + 4λ2

, (42)

and the same solution results.

Example 6: To complicate things slightly, consider the Fredholm equation

φ(x) = sinx+ λ

∫ 2π

0

(t− sinx)φ(t) dt . (43)

This too has an obvious form for the solution, namely φ(x) = α sinx + β .
Therefore, try the test solution φ0(x) = sinx on the RHS, the exact solution
for λ→ 0 . The first iteration then yields

φ1(x) = sinx+ λ

∫ 2π

0

(t− sinx) sin t dt = sinx− 2πλ , (44)

leading to
φ2(x) = (1 + 4π2λ2) sin x− 2πλ(1 + 4π2λ) . (45)

The ensuing algebra is a little more involved, and after summing over the
two pertinent geometric series, one eventually arrives at the solution

φ(x) =
(2π2λ− 1) sinx+ 2πλ

4π2λ2 + 2π2λ− 1
. (46)
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The essence of the Neumann technique is iterative, generating an infinite
series that is hopefully convergent. Thus for a general Fredholm equation of
the second kind, with f(x) 6= 0 ,

φ(x) = f(x) + λ

∫ b

a

K(x, t)φ(t) dt , (47)

the first three iterations in the φ(x) ≈ φn(x) sequence are

φ0(x) = f(x) ,

φ1(x) = f(x) + λ

∫ b

a

K(x, t) f(t) dt ,

(48)

φ2(x) = f(x) + λ

∫ b

a

K(x, t1) f(t1) dt1

+ λ2
∫ b

a

∫ b

a

K(x, t1)K(t1, t2) f(t2) dt2 dt1 . (49)

The full sequence develops the series

φn(x) =
n∑

m=0

λmum(x) , (50)

for

um(x) =

∫ b

a

∫ b

a

· · ·
∫ b

a

K(x, t1)K(t1, t2) . . . K(tm−1, tm) f(tm) dtm . . . dt1 .

(51)
This type of construction is the essence of perturbation theory in quantum
mechanics. If |f |max and |K|max are respectively the maximum values of
|f | and |K| on the interval [a, b] spanning both variables, then one can
guarantee convergence of the Neumann series if

|λ| · |K|max · |b− a| < 1 , (52)

using the Cauchy ratio test. This is sufficient, yet sometimes not necessary.

• For Example 6 above, this Cauchy convergence criterion translates to
2πλ < 1 , which would be inferred from the geometric series construction.
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3.2 Separable Kernels

The special case of Fredholm integral equations with kernels that are sepa-
rable in their two arguments presents a useful path to solution as a matrix
problem. These constitute kernels of the form

K(x, t) =
n∑
j=1

Mj(x)Nj(t) , (53)

where n is a positive integer. The sum is therefore finite. The ensuing
technique requires modification for cases where the series is infinite, which
can be workable in select cases. With this form for the kernel, the variable
dependence can be explicitly isolated as follows. We have

φ(x) = f(x) + λ
n∑
j=1

Mj(x)

∫ b

a

Nj(t)φ(t) dt . (54)

Then one can define a vector n = {nj} whose components are coefficients
of a dot product on the RHS of this equation:

nj =

∫ b

a

Nj(t)φ(t) dt . (55)

The mathematical form of the solution for φ(x) is automatically constrained:

φ(x) = f(x) + λ
n∑
j=1

njMj(x) . (56)

The integrals in Eq. (55) are routinely determined using Eq. (56):

ni = fi + λ

n∑
j=1

Kijnj , (57)

where

fi =

∫ b

a

Ni(t) f(t) dt and Kij =

∫ b

a

Ni(t)Mj(t) dt . (58)

Accordingly, one has a vector f = {fi} and a matrix K = {Kij} , with the
solution path defined by a matrix problem.
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Another framing is that this system defines a set of simultaneous equations
to be solved. In the matrix notation, for an identity matrix I ,

f = n− λKn ⇒ n =
(
I − λK

)−1
f . (59)

For inhomogeneous equations with f 6= 0 , it is possible to find a solution
provided that λ satisfies |I − λK| 6= 0 .

• Homogeneous equations with f = 0 present a different character to the
solution and the path for obtaining such. In this case, we call

|I − λK| = 0 (60)

the secular equation for the homogeneous Fredholm equation. It must
be satisfied in order to generate a solution to Eq. (54), in which case the
system of simultaneous equations for the coefficients is redundant in some
way. The secular equation then defines a select group of eigenvalues λk
and eigensolutions φk for which a viable solution is realized. Otherwise
no solution is possible.

Example 7: Consider first the inhomogeneous Fredholm equation

u(x) = ex + λCu x , Cu =

∫ 1

0

t u(t) dt . (61)

This has a kernel K(x, t) = xt , which is separable. Multiplying by x and
integrating over 0 ≤ x ≤ 1 yields

Cu ≡
∫ 1

0

xu(x) dx = 1 +
λ
3
Cu ⇒ Cu =

3
3− λ . (62)

Hence, the solution is

u(x) = ex +
3λx
3− λ (63)

for arbitrary λ 6= 3 . This is elementary, since this is a system corresponding
to a 1 × 1 matrix K . Yet most inhomogeneous equations will not have
kernels as simple as this one.
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Example 8: Consider now the Fredholm equation

u(x) = λ

∫ π

0

sin(x− t)u(t) dt , (64)

which is homogeneous. It does not admit solutions for general λ , and so
has to be treated as an eigenvalue problem. Since sin(x − t) = sinx cos t −
cosx sin t , we set

Cu =

∫ π

0

cos t u(t) dt

(65)

Su =

∫ π

0

sin t u(t) dt ,

and the Fredholm equation becomes

u(x) = λ
{
Cu sinx− Su cosx

}
. (66)

This form can be fed directly into Eq. (65) and the integrals routinely eval-
uated. This yields two results:

Su = λ

{
Cu

∫ π

0

sin2 t dt− Su
∫ π

0

sin t cos t dt

}
=

π
2
λCu

(67)

Cu = λ

{
Cu

∫ π

0

sin t cos t dt− Su
∫ π

0

cos2 t dt

}
= −π

2
λSu .

Viable solutions are realized only for eigenvalues λ = ±2i/π , with eigenvec-
tor solutions

u(x) = − 2
π
Cu e

±ix (68)

for arbitrary normalization constant Cu , which can be real or complex. Ac-
cordingly, the solution is a complex function.

• Observe that we have pursued a simultaneous equation protocol for secur-
ing the solution to this equation.
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Example 9: For an illustration of matrix protocols, consider the homoge-
neous equation

φ(x) = λ

∫ 1

−1
(t+ x)φ(t) dt . (69)

The individual functions that the kernel comprises are

M1(x) = 1 , M2(x) = x and N1(t) = t , N2(t) = 1 . (70)

It follows that

K =

(
0 2/3
2 0

)
. (71)

The secular equation and the eigenvalues are simply obtained∣∣∣∣ 1 −2λ/3
−2λ 1

∣∣∣∣ = 1− 4λ2

3
= 0 ⇒ λ = ±

√
3

2
. (72)

The eigenvectors are quickly determined:

φ1(x) = 1 +
√

3x , λ =

√
3

2
(73)

φ2(x) = 1−
√

3x , λ = −
√

3
2

,

and they are of arbitrary normalization because the integral equation is ho-
mogeneous.
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