
Example 3: Now consider Hermite’s ODE in both its original and its puta-
tively self-adjoint forms,

H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0 , (25)

which is not self-adjoint, and

φ′′n(x) + [2n+ 1− x2]φn(x) = 0 , φn(x) = e−x
2/2Hn(x) . (26)

We have already established the orthogonality relation∫ ∞
−∞

φm(x)φn(x) dx = 0 , m 6= n . (27)

The differential operator pertinent to Eq. (26) is

Hx ≡
d2

dx2 − x2 . (28)

This applies to boundary conditions that φn → 0 as |x| → ∞ , with zero
derivatives also there (guaranteed by the ODE itself); thus we have a Cauchy
problem. The pertinent eigenvalue is λn = −(2n+ 1) for eigenfunction φn .

Establishing the Hermitian character of Hx is straightforward using a pro-
tocol similar to that in Example 1. Let Lx = d2/dx2 ≡ Hx + x2 . Then,∫ ∞

−∞
y∗1 Lx y2 dx =

���
����[

y∗1
dy2

dx

]∞
−∞
−
∫ ∞
−∞

dy∗1
dx

dy2

dx
dx

=

���
���

��[
−dy

∗
1

dx
y2

]∞
−∞

+

∫ ∞
−∞

y2
d2y∗1
dx2 dx (29)

=

[∫ ∞
−∞

y∗2 Lx y1 dx

]∗
.

Then subtract the integral of x2y∗1y2 from both sides to yield∫ ∞
−∞

y∗1Hx y2 dx =

[∫ ∞
−∞

y∗2Hx y1 dx

]∗
. (30)

The self-adjoint nature of Eq. (26) on (−∞,∞) is thus confirmed.
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2 Inhomogeneous Cases: Green’s Functions

We now proceed to identify the path for solution of inhomogeneous problems.
We can return to our drumskin example, and drive the oscillations with a
source term:

Lru+ Lθu+ Ltu = f(~x)︸︷︷︸
source

. (31)

The task is to identify how to arrive at an analytic solution that can accom-
modate general forms for the driving term. To develop the formalism, we
restrict considerations to Hermitian operators, solving

Lu(~x)− λu(~x) = f(~x) . (32)

Presuming that we can solve the eigenvalue/eigenvector problem for L , ex-
pand both u(~x) and f(~x) as series of eigenfunctions of L :

u(~x) =
∑
n

cn un(~x) , f(~x) =
∑
n

fn un(~x) . (33)

Here Lun(~x) = λnun(~x) . The differential equation in Eq. (32) then becomes∑
n

cn (λn − λ)un(~x) =
∑
n

fn un(~x) . (34)

Since the eigenvectors are linearly independent (and orthonormal),

cn =
fn

λn − λ
. (35)

To leverage the orthogonality property for eigenvectors of Hermitian opera-
tors, we form the inner product

um · f ≡
∫

Ω

u∗m(~x) f(~x) d3x =
∑
n

fn u
∗
m · un = fm , (36)

where we have used u∗m ·un = δmn . This result can be inserted into Eq. (35)
and then into the series expansion for u(~x) , yielding

u(~x) =
∑
n

un · f
λn − λ

un(~x)

(37)

=
∑
n

un(~x)
λn − λ

∫
Ω

u∗n(~x ′) f(~x ′) d3x′ .
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This can be expressed compactly as

u(~x) =

∫
Ω

G(~x, ~x ′) f(~x ′) d3x′ , (38)

where

G(~x, ~x ′) =
∑
n

un(~x)u∗n(~x ′)
λn − λ

(39)

is called the Green’s function of the linear differential operator L . The
significance of this function is that it describes how the source at position
~x ′ influences the field u(~x) at ~x . This applies to both ODEs and PDEs.

• The Green’s function formalism is appropriate to action at a distance
forces like electrostatics and gravity – the Laplacian operator is Hermitian.

• It is also appropriate for scattering problems, where it is often called a
kernel: the source term is then a potential modulation of an incoming or
outgoing plane wave. This is the principle of the Feynman propagator.

• If the source is of infinite concentration, f(~x) = δ(~x− ~x0) , then

u(~x) =

∫
Ω

G(~x, ~x ′) δ(~x ′ − ~x0) d3x′ = G(~x, ~x0) , (40)

so that
LG(~x, ~x ′)− λG(~x, ~x ′) = δ(~x− ~x ′) . (41)

The Green’s function satisfies the same differential equation, but with the
source term replaced by the delta function. This is why the superposition of
solutions mediated by the kernel of a linear operator defines the solution for
general inhomogeneous source terms.

• Important Nuance: The exact mathematical nature of a Green’s func-
tion depends on both the linear operator, and the boundary conditions: chang-
ing the boundary conditions will alter the form of G(~x, ~x ′) .

• As is apparent in our previous eigenvalue/eigenvector exposition material,
we can subsume the constant λ into the differential operator, in which case
the eigenvalues change. As posed, the parameter λ can represent a separa-
tion constant for a multi-dimensional problem.
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Example 4: To illustrate the formation of Green’s functions in practice,
we return to our familiar vibrating string problem, with L = d2/dx2 and
λ = −k2 . If it is pinned at its ends x = 0, L , then the operating ODE and
boundary conditions are

d2u
dx2 + k2u = f(x) , u(0) = 0 = u(L) . (42)

The operating volume is Ω→ [0, L] , i.e., is one-dimensional. If this space is
established via a separation of variables with the time proceeding first, then
k = ω/c serves as a coupling constant. The eigenvalues for this ODE are

−λ ≡ k2 → −λn =

(
nπ
L

)2

. (43)

The orthonormal eigenfunctions are

un(x) =

√
2
L

sin
nπx
L

. (44)

These are normalized on [0, L] , i.e.,∫ L

0

u∗n(x)un(x) dx = 1 . (45)

The Green’s function assumes the form

G(~x, ~x ′) =
∑
n

un(~x)u∗n(~x ′)
λn − λ

=
2
L

∑
n

sin(nπx/L) sin(nπx′/L)
k2 − (nπ/L)2 . (46)

This then can be convolved with any f(x′) to derive the solution for any
source term. Observe that much of the character of this Green’s function
resembles the Fourier series solution that one derived in earlier Chapters.
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2.1 Inhomogenous Boundary Conditions

We now turn our attention to using Green’s functions as a path to the solution
of homogeneous equations with inhomogeneous boundary conditions. Consider
the stretched string (again) and the wave equation with periodic spatial BCs:

∂2u
∂x2 −

1
c2
∂2u
∂t2

= 0 , u(0, t) = 0 = u(L, t) . (47)

We consider two types of inhomogeneous Cauchy initial conditions:

1. u1(x, 0) = u0(x) and ∂u1(x, 0)/∂t = 0 , i.e., the initial displacement
is specified, but the initial speed is zero;

2. u2(x, 0) = 0 and ∂u2(x, 0)/∂t = v0(x) , i.e., the initial speed is
specified, but the string is initially in its rest position.

For both cases (with u → u1,2 ), we can accommodate the periodic spatial
boundary conditions thus:

u(x, t) =
∞∑
n=1

bn(t) sin
nπx
L

, (48)

an expansion in the spatial eigenfunctions. The derivatives in the wave equa-
tion become

∂2u
∂x2 =

∞∑
n=1

(
−n

2π2

L2

)
bn(t) sin

nπx
L

(49)
∂2u
∂t2

=
∞∑
n=1

∂2bn
∂t2

sin
nπx
L

.

Insertion into the wave equation, combined with the orthogonality of the
eigenfunctions, implies that we can isolate the time coefficients term-by-term:

∂2bn
∂t2

= −n
2π2c2

L2 bn . (50)

This solves for bn(t) in sinusoidal form, and the general solution can be
expressed thus:

u(x, t) =
∞∑
n=1

(
An cos

nπct
L

+Bn sin
nπct
L

)
sin

nπx
L

, (51)
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• The boundary conditions for case 1 yield
∞∑
n=1

An sin
nπx
L

= u0(x) ,

∞∑
n=1

nπc
L

Bn sin
nπx
L

= 0 . (52)

This yields the obvious solution Bn = 0 , and the An coefficients are deter-
mined using the orthogonality relations for the trigonometric functions:

An =
2
L

∫ L

0

u0(x′) sin
nπx′

L
dx′ . (53)

Assembling the pieces, one can write the final solution as (u→ u1 )

u1(x, t) =

∫ L

0

g1(x, x′, t)u0(x′) dx′ , (54)

when employing a Green’s function

g1(x, x′, t) =
2
L

∞∑
n=1

sin
nπx
L

sin
nπx′

L
cos

nπct
L

. (55)

• In a similar analysis, the boundary conditions for case 2 yield
∞∑
n=1

An sin
nπx
L

= 0 ,
∞∑
n=1

nπc
L

Bn sin
nπx
L

= v0(x) . (56)

This yields the obvious solution An = 0 , and the Bn coefficients are deter-
mined using the orthogonality relations for the trigonometric functions:

Bn =
2
nπc

∫ L

0

v0(x′) sin
nπx′

L
dx′ . (57)

Assembling the pieces, one can write the final solution as (u→ u2 )

u2(x, t) =

∫ L

0

g2(x, x′, t) v0(x′) dx′ , (58)

when employing a Green’s function

g2(x, x′, t) =
2
πc

∞∑
n=1

1
n

sin
nπx
L

sin
nπx′

L
sin

nπct
L

. (59)

• From these two cases, it is patently evident that altering the boundary
conditions changes the Green’s function. Problem: Illustrate g1 and g2

graphically in the (x, x′) plane for different t .
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