
2.2 Transform Techniques

The separation of variable technique works very well when the differential
operator is of fairly simple form, and discrete separation constants are ac-
cessible. This is not always the case, and in particular, the initial/boundary
conditions may not be periodic. Discrete sums over separation constants may
be infinite, and moreover, continuous sampling of then may prove necessary.
This domain is optimal for employing transform techniques, and we illustrate A&W

Sec. 15.4the approach using two examples.

Example 1: Consider the 1D wave equation

∂2y
∂x2
− 1
c2
∂2y
∂t2

= 0 , (34)

with the initial conditions

y(x, 0) = φ(x) , ẏ(x, 0) = 0 . (35)

Note that these are Cauchy conditions on the temporal boundary curve.
Taking the Fourier transform with respect to x ,

Y (k, t) =
1√
2π

∫ ∞
−∞

y(x, t) eikx dx , (36)

so that the Fourier transform of ∂2y/∂x2 is −k2 Y (k, t) . The wave equation
then becomes an ODE in time when thus transformed:

−k2 Y − 1
c2
∂2Y
∂t2

= 0 . (37)

This is then simply solved:

Y (k, t) = Y1(k) eikct + Y2(k) e−ikct , (38)

where the Yi(k) are the constants of integration. These are constrained by
the two initial conditions in Fourier space:

Y (k, 0) = Y1(k) + Y2(k) =
1√
2π

∫ ∞
−∞

φ(x) eikx dx ,

(39)

Ẏ (k, 0) = ikc
[
Y1(k)− Y2(k)

]
= 0 ,
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from which it follows that

Y1(k) = Y2(k) =
1

2
√

2π

∫ ∞
−∞

φ(x) eikx dx . (40)

Inverting the transform in k space leads to the complete solution

y(x, t) =
1

4π

∫ ∞
−∞

e−ikx
(
eikct + e−ikct

)
dk

∫ ∞
−∞

φ(x′) eikx
′
dx′ . (41)

This can be simplified by reversing the order of the integrations:

y(x, t) =
1

4π

∫ ∞
−∞

dx′ φ(x′)

∫ ∞
−∞

dk
(
e−ik (x−x

′−ct) + e−ik (x−x
′+ct)

)
(42)

=
1
2

∫ ∞
−∞

dx′ φ(x′)
{
δ[x− x′ − ct] + δ[x− x′ + ct]

}
,

using the complex exponential integral definition of the Dirac δ function.
This then trivially reduces to the final compact form for the solution:

y(x, t) =
1
2

[
φ(x− ct) + φ(x+ ct)

]
, (43)

which is easily demonstrated to satisfy the Cauchy conditions in Eq. (35), as
well as the original wave equation.

• N. B. We could equally well take the Fourier transform with respect to
time, however the implementation of the initial conditions would have been
more complicated, although the answer would have been the same.

Example 2: Now we look at a slightly more interesting example. Consider
the 1D diffusion equation

∂2ρ
∂x2

=
1
κ
∂ρ
∂t

. (44)

Here ρ(x, t) represents some quantity such as the concentration of an im-
purity in a background fluid, or the excess temperature of a fluid element.
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Suppose that we introduce a finite amount of ρ at t = 0 so that ρ = 0 for
t < 0 . Our boundary condition is therefore

ρ(x, 0) = σ0 δ(x) . (45)

Let us add the condition that the total amount of the impurity is conserved
at all times: ∫ ∞

−∞
ρ(x, t) dx =

∫ ∞
−∞

ρ(x, 0) dx = σ0 . (46)

Now take the Fourier transform in space of ρ , defining

R(k, t) =
1√
2π

∫ ∞
−∞

ρ(x, t) eikx dx . (47)

The Fourier transform of the diffusion equation is

∂R
∂t

= −κ k2R(k, t) ⇒ R(k, t) = R(k, 0) e−κ k
2t , (48)

solving this as a first-order ODE. We can determine the initial value of
R(k, 0) via

R(k, 0) =
1√
2π

∫ ∞
−∞

σ0 δ(x) eikx dx =
σ0√
2π

, (49)

so that R(k, t) is completely defined. We now take the inverse Fourier
transform

ρ(x, t) =
1√
2π

∫ ∞
−∞

R(k, t) e−ikx dk =
σ0
2π

∫ ∞
−∞

e−κ k
2t−ikx dk . (50)

Now complete the squares in the argument of the exponential, expressing it
as

−κt
(
k +

ix
2κt

)2

− x2

4κt
(51)

The resulting Gaussian integral is simply evaluated, and the final solution is

ρ(x, t) =
σ0√
4π κt

e−x
2/4κt . (52)

This Gaussian clearly satisfies Eq. (46), and also realizes ρ(x, 0) = σ0 δ(x) .
The mean free path for spatial diffusion is λ ∼

√
2κt .
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13. EIGENFUNCTIONS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Eigenfunctions and Eigenvalues for Linear

Differential Equations

As an extension of our vector and matrix considerations, observe that linear A & W,
Ch. 9 & 10operators can be differential in nature, for example

Lx ≡ d2

dx2 + k2 with Lxy = 0 (1)

as an ODE. Add to this our knowledge that the solution of PDEs via the
technique of separation of variables suggests eigenvalues similar to those in
the matrix context. Specifically, separation of variables is a sequence of
eigenvalue problems,

Ly(~x) = λ y(~x) . (2)

We will now draw upon our vector space tools to develop pedagogy for eigen-
value problems involving differential operators. This method is known as
Sturm-Liouville theory.

∗ This is very valuable in studies of quantum mechanics.

• A linear differential operator L is said to be Hermitian (self-adjoint) if∫
Ω

y∗1(~x)Ly2(~x) d3x =

[∫
Ω

y∗2(~x)Ly1(~x) d3x

]∗
, (3)

where y1 and y2 are arbitrary functions that satisfy a given set of conditions
on the region boundary Ω .
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• Suppose that L is Hermitian. Then its eigenvalues λi are real, and its
distinct eigenvectors yi(~x) are orthogonal. For a proof, use

Lyi(~x) = λi yi(~x) , L yj(~x) = λj yj(~x) (4)

to define two eigenvectors and corresponding eigenvalues, both of which must
satisfy specified conditions on the boundary Ω . Then

I1 ≡
∫

Ω

y∗j (~x)Lyi(~x) d3x = λi

∫
Ω

y∗j (~x) yi(~x) d3x (5)

and

I2 ≡
[∫

Ω

y∗i (~x)Lyj(~x) d3x

]∗
=

[
λj

∫
Ω

y∗i (~x) yj(~x) d3x

]∗
, (6)

which becomes

I2 = λ∗j

∫
Ω

y∗j (~x) yi(~x) d3x . (7)

Since L is Hermitian, I2 = I1 , from which it immediately follows that

I1 − I2 ≡
(
λi − λ∗j

) ∫
Ω

y∗j (~x) yi(~x) d3x = 0 . (8)

The claims then follow: the real nature of the eigenvalues results for i = j ,
and orthogonality is obtained for i 6= j , since λ∗j 6= λi .

∗ Note that this Hermitian result is totally analogous with the matrix case.

∗ Observe that the integrals that appear in these manipulations are effec-
tively dot products for integrals in measure theory:

yj · yi ≡
∫

Ω

y∗j (~x) yi(~x) d3x . (9)

The complex conjugation leads to real results for complex functions when the
dot product involves a function and itself: it therefore becomes a measure of
the square of the real length of the functional vector.

• Now we see the context for why Hermite’s ODE is described as not being
self-adjoint, where as the modified ODE for the functions exp{−x2/2}Hn(x)
is Hermitian, and these functions are mutually orthogonal.
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Example 1: Let us consider a familiar set of orthonormal functions, namely
trigonometric functions that satisfy periodic boundary conditions.

d2y
dx2 + λ y = 0 , 0 ≤ x ≤ 2π . (10)

We have y(2π) = y(0) and y′(2π) = y′(0) on the boundaries (Cauchy
conditions). The question we pose is whether or not the operator Lx =
d2/dx2 is Hermitian? Form the integral∫ 2π

0

y∗1 Lx y2 dx =
��

����
[
y∗1
dy2

dx

]2π

0

−
∫ 2π

0

dy∗1
dx

dy2

dx
dx

=
�

���
���[

−dy
∗
1

dx
y2

]2π

0

+

∫ 2π

0

y2
d2y∗1
dx2 dx (11)

=

[∫ 2π

0

y∗2 Lx y1 dx

]∗
,

where successive integration by parts has been employed, and periodic solu-
tions presumed. Therefore Lx = d2/dx2 is Hermitian for this set of Cauchy
boundary conditions. However, observe that it would not necessarily be Her-
mitian if non-periodic boundary conditions were adopted.

Example 2: To elucidate further, we look again at the separation of variables
technique for PDEs, using the 2D wave equation in cylindrical geometry as
our basis. This could correspond to the problem of drumskin vibrations.

∇2u− 1
c2
∂2u
∂t2

= 0

(12)

⇒ 1
r
∂
∂r

(
r
∂u
∂r

)
+

1
r2
∂2u
∂θ2 −

1
c2
∂2u
∂t2

= 0 .

One can, and should, require period boundary conditions for this in the
azimuthal angle dimension: u(θ = 2π) = u(θ = 0) . Write

u(~x) = R(r) Θ(θ)T (t) and define Lθ =
d2

dθ2 . (13)

Then, if Θ(θ) = e±inθ ,

Lθu(~x) = R(r)T (t)
{
LθΘ

}
= −n2R(r)T (t) Θ(θ) = −n2 u(~x) . (14)
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Here, n is an integer, and −n2 is the eigenvalue for Lθ . We can now form

u(~x) =
∞∑
n=0

R(r)T (t)
{
ane

inθ + bne
−inθ

}
. (15)

If we define the radial differential operator

Lr ≡
d2

dr2 +
1
r
d
dr
− n2

r2 , (16)

then the wave equation now becomes

1
R(r)

Lr

[
R(r)

]
=

1
c2 T (t)

d2T (t)
d2t

→ −k2 . (17)

To proceed further, one needs radial boundary conditions. Let these be that
u(r = 0) is finite, and that u(r = rd) = 0 , a common set-up for cylindrical
BVPs that is suited to the drumskin acoustic problem. Then not only do we
have LrR = const.R , so that the R(r) satisfy a form of Bessel’s ODE, but
that R is related to the zeros kjnrd of the Jn Bessel function:

R(r) = Jn(kjnr) with Jn(kjnrd) = 0 . (18)

While the kjn afford a new type of character for the eigenvalues, the Jn(kjnr)
do obey orthogonality relations. Specifically, if the αni are the zeroes of
Jn(x) (an infinite set), then∫ 1

0

x Jn(αnix) Jn(αnjx) dx = 0 , i 6= j . (19)

There is also a normalization relation∫ 1

0

x
[
Jn(αnix)

]2

dx =
1
2

[
Jn+1(αni)

]2

. (20)

The two combine to be of use not just for this Sturm-Louiville problem, but
also for Fourier-Bessel series.
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The wave function is now of the form

u(~x) =
∞∑
n=0

∞∑
j=1

gjn(t) Jn(kjnr)
{
ane

inθ + bne
−inθ

}
, (21)

and the remaining ODE for the time dependence is

k2
jn gjn(t) +

1
c2 Ltgjn(t) = 0 , Lt ≡

d2

dt2
. (22)

This possesses a solution

gjn(t) = e±iωjnt , ωjn = ckjn . (23)

Here the third differential operator is Lt , which possesses eigenvalues ωjn .

The complete solution for this eigenvalue/eigenvector problem can be written
in real form as

u(r, θ, t) =
∞∑
n=1

∞∑
j=1

Jn(kjnr) ·
{
an sinnθ + bn cosnθ

}
(24)

×
{
αjn sinωjnt+ βjn cosωjnt

}
.

Observe that we have three Hermitian differential operators, and hence three
sets of eigenvectors, but only two independent sets of eigenvalues.

∗ Observe that the appearance of the Bessel functions is not happenstance:
this 2D problem is akin to cylindrical geometry in 3D, and so one would
naturally expect the Jn(kjnr) functions to appear.

∗ The general decline of |Jn(kjnr)|2 as r gets large connects physically to
energy conservation in the plane for centrally-located initial perturbations.

∗ If one combines the angular and temporal portions, one can character-
istics nθ ± ωjnt = const. at a fixed radius. These define non-radial modes
of oscillation, with a fundamental (n = 0 ) an higher frequency harmonics:
these are akin to surface seismic modes on Earth. One can also discern these
when dropping two stones into a pond.
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