
2 Hermite Polynomials Hn(x)

The next class of orthogonal polynomials to be considered are Hermite A&W
Sec. 13.1polynomials, which can be defined via the generating function

g(x, t) = exp{−t2 + 2tx} =
∞∑
n=0

Hn(x)
tn

n!
. (16)

This can be employed in the now familiar differentiation protocol to yield
the recurrence relations

Hn+1(x) = 2xHn(x)− 2nHn−1(x) ,
(17)

H ′n(x) = 2nHn−1(x) .

The substitutions t → −t and x → −x in the generating function simply
yield the parity relation Hn(−x) = (−1)nHn(x) . These recurrence relations
quickly lead to the second order Hermite ODE

H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0 , (18)

which is clearly not self-adjoint.

• The Rodrigues’ formula can be obtained by interpreting the generating
function g(x, −t) as a Taylor series about t = 0 , so that

Hn(x) = (−1)n
dn

dtn

[
exp
{
x2 − (t+ x)2

}]
t=0

= (−1)nex
2 dn

dxn
(e−x

2

) .

(19)
This can then be used to establish the orthogonality integral∫ ∞

−∞
e−x

2

Hm(x)Hn(x) dx = 0 , m 6= 0 . (20)

This implies that the Hermite polynomials are not self-adjoint, but the func-
tions φn(x) = e−x

2/2Hn(x) are, and they satisfy

φ′′n(x) + [2n+ 1− x2]φn(x) = 0 . (21)

This is the equation of motion for a quantum mechanical simple harmonic
oscillator (SHO), an important application of Hermite polynomials.
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• The orthonormality condition for the Hermite polynomials needs to be
determined. We proceed by squaring the generating function and multiplying
by exp(−x2) :

e−x
2

e−s
2+2sxe−t

2+2tx =
∞∑

m,n=0

e−x
2

Hm(x)Hn(x)
smtn

m!n!
. (22)

This is now in a form to integrate over (−∞, ∞) and employ the orthogo-
nality condition to collapse the double sum into a single one with m = n :

∞∑
n=0

(st)n

(n!)2

∫ ∞
−∞

e−x
2 {Hn(x)}2 dx =

∫ ∞
−∞

e−x
2−s2+2sx−t2+2tx dx

(23)

= e2st
∫ ∞
−∞

e−(x−s−t)
2

dx =
√
π e2st =

√
π

∞∑
n=0

2n(st)n

n!
.

Equating the coefficients term by term yields the normalization constraint∫ ∞
−∞

e−x
2 {Hn(x)}2 dx = 2n

√
π n! . (24)

• The quantum mechanical SHO with a potential energy V = mω2z2/2 is
described by the Schrödinger equation

− ~2
2m
∇2Ψ(z) +

mω2z2

2
Ψ(z) = EΨ(z) . (25)

Here ω is the angular frequency of the corresponding classical oscillator.
Rescaling the spatial coordinate by x = αz with α =

√
mω/~ , the ODE

can be written in the form (for λ = 2E/~ω )

d2ψ(x)
dx2

+ (λ− x2)ψ(x) = 0 , ψ(x) ≡ Ψ(z/α) . (26)

The Frobenius series technique then yields bounded polynomial solutions for
ex

2/2ψ(x) only of λ = 2n+ 1 for integer n , thereby demarcating the quan-
tum numbers. These solutions are the Hermite polynomials, and the energy is
quantized via E = (n+1/2)~ω . The ground state n = 0 therefore has finite
energy ~ω/2 .
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3 Laguerre Functions

Laguerre functions Ln(x) are also pertinent to cylindrical geometries, and
are solutions of Laguerre’s ordinary differential equation: A&W

Sec. 13.2
x
d2y
dx2

+ (1− x)
dy
dx

+ n y = 0 . (27)

These are polynomials when n is an integer, and the Frobenius series is
truncated at the xn term. A new representation, which can also be obtained
for other special functions, is the Schläfli integral representation

Ln(x) =
1

2πi

∮
e−xz/(1−z)

(1− z) zn+1 dz . (28)

The contour lies inside the unit circle and encircles the origin, i.e., |z| < 1 .
One can then form the left hand side of Eq. (27), and the result is

1
2πi

∮ [
x

(1− z)3 zn−1
− 1− x

(1− z)2 zn
+

n
(1− z) zn+1

]
e−xz/(1−z) dz . (29)

Grouping terms appropriately, this is equal to

1
2πi

∮
d
dz

[
e−xz/(1−z)

(1− z) zn

]
dz . (30)

Obviously, since there is no simple pole within the contour, since the Laurent
series of the integrand does not possess a 1/z term. The resulting integral
is zero, and the Schläfli integral satisfies Laguerre’s ODE. The generating
function series identity is quickly found using the Schläfli integral form and
a geometric series manipulation:

∞∑
n=0

Ln(x) zn =
∞∑
n=0

zn

2πi

∮
e−xu/(1−u)

(1− u)un
du
u

(31)

=
1

2πi

∮
e−xu/(1−u) du

(1− u) (u− z)

so that applying the Residue theorem leads to the result

g(x, z) =
e−xz/(1−z)

(1− z)
=

∞∑
n=0

Ln(x) zn , |z| < 1 . (32)
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Introducing the transformation z = 1 − x/t , then since the new contour in
the t -plane surrounds t = x ,

Ln(x) =
ex

2πi

∮
tne−t

(t− x)n+1 dt ⇒ Ln(x) =
ex

n!
dn

dxn
(xne−x) (33)

using Cauchy’s integral formula for derivatives. We then also have the finite
series form of the Laguerre polynomials:

Ln(x) =
n∑

s=0

(−1)sn!xs

(n− s)! {s!}2 . (34)

• From this it becomes obvious that the Laguerre polynomials do not possess
a parity property. Nor should they, since they are basis states for the [0,∞)
interval that is not symmetric about the origin.

-2 2 4 6

-5

5

10

Laguerre polynomials L_1@xD, L_2@xD, L_3@xD, L_4@xD

Figure 3: The Laguerre polynomials L1(x) , L2(x) , L3(x) and L4(x) , eval-
uated on the real axis, highlighting the lack of parity about the origin.

Now we regurgitate a handful of standard results for the Laguerre polynomi-
als. The first are the recurrence relations:

(n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x)− nLn−1(x) ,
(35)

xL′n(x) = nLn(x)− nLn−1(x) .

9



Then we have the orthogonality relation∫ ∞
0

e−xLm(x)Ln(x) dx = δm,n . (36)

This follows routinely from Sturm-Louiville theory, to be studied in due
course, and defines the basis for computing quadrature integrations for the
case of quasi-exponential integrands.

3.1 Associated Laguerre Polynomials

• As with other classes of orthogonal polynomials, we can extend to asso-
ciated Laguerre polynomials, defined via

Lk
n(x) = (−1)k

dk

dxk
Ln+k(x) =

n∑
s=0

(−1)s(n+ k)!xs

(n− s)! (s+ k)! s!
. (37)

The generating function is

g(x, z) =
e−xz/(1−z)

(1− z)k+1 =
∞∑
n=0

Lk
n(x) zn , |z| < 1 , (38)

the Rodrigues’ representation is

Lk
n(x) =

exx−k

n!
dn

dxn
(
xn+ke−x

)
, (39)

and the associated Laguerre polynomials obey the ODE

x
d2y
dx2

+ (k + 1− x)
dy
dx

+ n y = 0 . (40)

Their orthogonality relation is∫ ∞
0

e−xxk Lk
m(x)Lk

n(x) dx =
(n+ k)!
n!

δm,n . (41)

• One of the most important applications of associated Laguerre functions
is in the solution of the Schrödinger equation for the hydrogen atom, cap-
turing the radial portion after separation of variables extracts the spherical
harmonic component.
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4 Hypergeometric Functions

The classes of special functions we have discussed so far can mostly be cat- A&W
Sec. 13.4egorized as special cases of the broader class of functions known as hyper-

geometric functions, which satisfy Gauss’ hypergeometric ODE

x(1− x)
d2y
dx2

+ [c− (a+ b+ 1)x]
dy
dx
− ab y = 0 . (42)

The solution that is bounded as z → 0 is

2F 1(a, b, c; x) = 1 +
ab
c
x
1!

+
a(a+ 1)b(b+ 1)

c(c+ 1)
x2

2!
+ . . . (43)

for c not equal to zero or a negative integer.

• Functions that are related to hypergeometric functions are Legendre, Cheby-
shev, Gegenbauer and incomplete Beta functions.

There are also the confluent hypergeometric functions, which satisfy A&W
Sec. 13.5

x
d2y
dx2

+ [c− x]
dy
dx
− a y = 0 . (44)

This ODE can be obtained from the hypergeometric one by merging two of
its singularities.

• Functions that are related to confluent hypergeometric functions are Bessel,
error, incomplete Gamma, Laguerre and Hermite functions.
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12. PARTIAL DIFFERENTIAL
EQUATIONS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Characterization of PDEs

• Since many problems in physics encapsulate linear, second order partial A&W
Sec. 9.1differential equations (PDEs), these will form our focus in this chapter. Ex-

amples abound in mechanics, fluid flow, diffusion, electrodynamics and quan-
tum mechanics. Non-linear equations such as encountered in the theory of
solitons, shock waves and general relativity, will not be explored.

• The general form of the 2nd order, linear PDE is

A ∂2ψ
∂x2

+ 2B ∂2ψ
∂x ∂y

+ C ∂
2ψ
∂y2

= f

(
x, y,

∂ψ
∂x

,
∂ψ
∂x

)
. (1)

Familiar examples include:

Laplace’s equation : ∇2ψ = 0 ,

Wave equation : ∇2ψ − 1
c2
∂2ψ
∂t2

= 0 ,

Diffusion equation : ∇2ψ − 1
κ
∂ψ
∂t

= 0 , (2)

Helmholtz equation : ∇2ψ + k2 ψ = 0 ,

Schrödinger equation : − ~2
2m
∇2ψ + V (~x)ψ − i~ ∂ψ

∂t
= 0 .

Observe that these are all homogeneous because f = 0 : if ψ is a solution,
then so is any multiple of ψ .
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• An inhomogenous form for the PDE results if a force or source term
is added to the RHS of these equations.

∗ e.g. The inhomogenous form of Laplace’s equation is known as Pois-
son’s equation.

• Observe that if ψ ∼ e±iωt , then the wave equation reduces to the Helmholtz
equation with k = ω/c , and if ψ ∼ e−γt , then the diffusion equation reduces
to the Helmholtz equation with k2 = γ/κ .

• Even a homogeneous PDE can be complicated by the boundary condi-
tions that enable its integration. The combined information is known as a
boundary value problem (BVP). A homogeneous BVP requires not only
a homogeneous PDE, but also homogeneous boundary conditions.

A unique solution requires sufficient boundary information but not too much,
on a boundary curve or surface. The right level is determined by the type of
equation. There are three standard types of boundary/initial conditions:

• Dirichlet: ψ is specified on the boundary;

• Neumann: (∇ψ)n is specified on the boundary;

• Cauchy: both ψ and (∇ψ)n are specified on the boundary.

Note that the subscript n denotes the direction normal to the boundary;
this is required so as to propagate information into the region of interest.
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