
2 Modified Bessel Functions Iν(x) and Kν(x)

Wave equations in cylindrical coordinates, or the diffusion equation, often
lead to the appearance of a modified Bessel differential equation for the A&W

Sec. 11.5cylindrical variable ρ :

ρ2
d2y
dρ2

+ ρ
dy
dρ
− (ρ2 + ν2) y = 0 . (27)

The only modification is essentially to replace the independent variable ρ→
iz , so that by viewing the system in the complex plane, the solution is
obviously a modified Bessel function of the first kind:

Iν(z) = e−νiπ/2 Jν
(
z eiπ/2

)
≡ 1

iν
Jν(iz) . (28)

The normalization out the front is arbitrary, but is chosen to simplify the
functional dependence near the origin z = 0 . The Taylor series expansion is
obtained by simple adaptation of Eq. (1), i.e.,

Iν(z) =
∞∑
s=0

1
s! (ν + s)!

(
z
2

)ν+2s

. (29)

The absence of the (−1)s factor in each term indicates that Iν is not oscil-
latory in character, but rather exponential. For integer ν , we have

I−n(z) = In(z) . (30)

The recurrence relations our routinely obtained from Eqs. (8) and (10) via
the substitution z → iz , yielding

Iν−1(z)− Iν+1(z) =
2ν
z
Iν(z) ,

(31)
Iν−1(z) + Iν+1(z) = 2 I ′ν(z) .

From these, one can routinely demonstrate that In(z) satisfies the ODE in
Eq. (27), though this is guaranteed by the substitution protocol employed.

Similarly, minimal effort is required to obtain the generating function, em-
ploying z → iz and t→ t/i in the Laurent series in Eq. (2):

g(z, t) ≡ exp

{
z
2

(
t+

1
t

)}
=

∞∑
n=−∞

In(z) tn . (32)
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A modified Bessel function of the second kind or MacDonald Func-
tion can be defined to serve as the second solution to the modified Bessel
ordinary differential equation:

Kν(z) =
π
2
I−ν(z)− Iν(z)

sin νπ
. (33)

Observe that the cos νπ factor does not appear due to the n → −n sym-
metry of In(z) . Such Bessel functions appear in the treatment of relativistic
Maxwell Boltzmann distributions and synchrotron radiation theory. The re-
currence relations are similar to those for the Iν :

Kν−1(z)−Kν+1(z) = −2ν
z
Kν(z) ,

(34)
Kν−1(z) +Kν+1(z) = −2K ′ν(z) .

The Wronskian for the two modified Bessel functions is also of an anticipated
form:

Iν(z)K ′ν(z)− I ′ν(z)Kν(z) = −1
z

; (35)

the ODE modification does not alter the 1/z dependence of the Wronskian.
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Figure 3: The modified Bessel functions In(x) and Kn(x) for n = 0, 1 ,
illustrating the rising exponential character of the In and the declining ex-
ponential behavior of the Kn , which also diverge as x→ 0 .
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2.1 Integral Representations and Asymptotic Series

To obtain an integral representation analogous to the one derived for Jn(z) ,
we can insert t→ ieiθ into the generating function in Eq. (32). Recognizing
that the integral form for Jn(z) is actually valid for arbitrary complex z ,
not just real arguments, permits the direct substitution z → iz in Eq. (32).
Exploiting some symmetries in manipulating the integrals, the result is

In(z) =
1
π

∫ π

0

ez cos θ cos(nθ) dθ , (36)

derived in A/W Ex. 11.5.14. Since the exponential portion of the integrand
peaks strongly near θ ≈ 0 when z � 1 , the method of steepest descents
with cos θ ≈ 1 − θ2/2 and cosnθ → 1 then quickly yields an asymptotic
form

In(z) ≈ ez√
2πz

, z � 1 , (37)

which is independent of the index n . Higher order corrections are dependent
on the index. A useful alternative integral representation is

Iν(z) =
1√

π Γ(ν + 1/2)

(
z
2

)ν ∫ π

0

e±z cos θ sin2ν θ dθ . (38)

• The most prominent integral representation for the modified Bessel func-
tion of the second kind is (see A/W Ex. 11.5.13)

Kν(z) =

∫ ∞
0

e−z cosh θ cosh(νθ) dθ . (39)

This also exhibits exponential character in z , and for z � 1 , the dominant A&W
pp. 721contribution to the integration is around θ ≈ 0 , with cosh θ ≈ 1 + θ2/2 ,

quickly yielding a steepest descent result

Kν(z) ≈
√

π
2z
e−z , z � 1 , (40)

again independent of ν . Combining these asymptotic solutions, one observes
consistency with the Wronskian in Eq. (35).
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11. SPECIAL FUNCTIONS III:
ORTHOGONAL POLYNOMIALS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Legendre Polynomials Pn(x)

Legendre functions emerge naturally in polar coordinate descriptions of phys- A&W
Sec. 12.1ical quantities. For example, the Coulomb potential (inverse square force)

for a charge q displaced from the origin at a distance x = a can be cast in
the form

φ(r, θ) =
q√

r2 + a2 − 2ar cos θ
. (1)

This can be expressed as a series of Legendre polynomials using the gener-
ating function (for z = cos θ and t = min(r/a, a/r) ≤ 1 )

g(t, z) =
1√

1− 2zt+ t2
=

∞∑
n=0

Pn(z) tn , |t| < 1 . (2)

A binomial series expansion of the generating function yields an infinite series
in 2zt − t2 , which can then be expressed as a double series in powers of t
and z . Rearrangement of this yields finite series expressions for the Legendre
polynomials

Pn(z) =

[n/2]∑
k=0

(−1)k (2n− 2k)! zn−2k

2n k! (n− k)! (n− 2k)!
. (3)

This is a result that could be generated from Frobenius’ series solutions to
Legendre’s ODE, in the case of truncation for integer indices. From this, it
is evident that Pn is odd or even according to the parity of n .
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• It is simple to deduce Rodrigues’ formula by forming the nth derivative of
x2n−2k of each term in the summation, and invoking the binomial theorem:

Pn(x) =

[n/2]∑
k=0

(−1)k

2n k! (n− k)!

(
d
dx

)n
x2n−2k =

1
2nn!

(
d
dx

)n
(x2 − 1)n . (4)

This form also clearly indicates that Pn(x) is an nth degree polynomial.
Rodrigues’ formula is useful in proving various properties of Legendre poly-
nomials such as orthogonality. We can do this by successively integrating the A&W

Sec. 12.3appropriate inner product by parts. Without loss of generality, assume that
m < n , so that∫ 1

−1
Pn(x)Pm(x) dx ∝

∫ 1

−1

dn

dxn
(x2 − 1)n

dm

dxm
(x2 − 1)m dx

= −
∫ 1

−1

dn−1

dxn−1
(x2 − 1)n

dm+1

dxm+1 (x2 − 1)m dx

... (5)

= (−1)m
∫ 1

−1

dn−m

dxn−m
(x2 − 1)n

d2m

dx2m
(x2 − 1)m dx

= 0 .

At each integration by parts, the residual outside the integration contains an
(n−p)th derivative of (x2−1)n , so it possesses a factor that is some non-zero
power of x2 − 1 , which generates zero at the extremities x = ±1 . The last
integration contains a constant term from the derivative of (x2−1)m (which
is (2m)! ), and so is simply evaluated as zero because m < n .

• The m = n case can be used to establish the normalization:

22n (n!)2
∫ 1

−1
[Pn(x)]2 dx =

∫ 1

−1
(1− x2)n (2n)! dx =

(2n)!
2

B
(

1
2
, n+ 1

)
(6)

so that Legendre’s duplication formula can then be applied to generate∫ 1

−1
[Pn(x)]2 dx =

2
2n+ 1

, (7)

which defines the normalization of the Legendre polynomials.

2



-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

Legendre polynomials  P1(x), P2(x), P3(x), P4(x)

P1(x)

P3(x)

P2(x)
P4(x)

Figure 1: The Legendre polynomials P1(x) , P2(x) , P3(x) and P4(x) , eval-
uated on the real axis, highlighting the parity being assigned by the value of
index n , and the destructive interference that underpins their orthogonality.

• Observe that Rodrigues’ form automatically implies the parity relation
Pn(−x) = (−1)n Pn(x) .

• Analytic continuation yields identical mathematical forms for the Pn(z)
in the domain |z| > 1 .

• Differentiation of the generating function identity again leads to recurrence A&W
Sec. 12.2relations:

(n+ 1)Pn+1(z) + nPn−1(z) = (2n+ 1)z Pn(z) ,
(8)

P ′n+1(z)− P ′n−1(z) = (2n+ 1)Pn(z) .

For |z| < 1 , these are actually stable to upward (or downward!) recurrence,
and can be combined, differentiated and rearranged to yield Legendre’s ODE

(1− z2)P ′′n (z)− 2z P ′n(z) + n(n+ 1)Pn(z) = 0 . (9)

Such an equation arises naturally in the separation of variables technique
for solution of PDEs in polar coordinates, with z = cos θ . Then n serves
as a quantum number, often deriving from the restriction to single-valued
solutions in the azimuthal coordinate φ .
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1.1 Legendre Functions of the 2nd Kind Qn(x)

The second solution to Legendre’s ordinary differential equation constitutes a A&W
Sec. 12.10class of non-polynomial functions known as those of the second kind, Qn(z) .

By employing the Wronskian technique, for integer indices,

Qn(z) = Pn(z)

{
αn + βn

∫ z
dx

(1− x2) [Pn(x)]2

}
. (10)

At the regular singular points x = ±1 , since Pn(x) is bounded and non-zero,
the integral is logarithmic in character, with a residual functional dependence
that can actually be expressed as a finite sum over Pk(z) Legendre polyno-
mials (G&R 8.831.2 and 8.831.3):

Qn(z) =
1
2
Pn(z) loge

∣∣∣1 + z
1− z

∣∣∣+
n∑

k=1

1
k
Pk−1(z)Pn−k(z) . (11)

This form for Qn(z) is valid for all |z| 6= 1 . Observe that the Qn possess
the opposite polarity of the Pn , namely Qn(−z) = (−1)n+1Qn(z) ; this can
quickly be deduced from Eq. (11).
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Figure 2: The Legendre polynomials Q0(x) , Q1(x) and Q2(x) , evaluated
on the real axis, highlighting the parity assigned by the value of index n .
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1.2 Associated Legendre Functions

As an extension to the Legendre functions we have considered so far, we have A&W
Sec. 12.5the associated Legendre functions Pm

n (z) , which for integer indices m
and n are polynomials, which can be expressed in the Rodrigues’ form

Pm
n (z) = (−1)m(1− z2)m/2 dm

dzm
Pn(z) , (12)

for |m| ≤ n . They have a generating function

(2m)!

2mm! (1− 2zt+ t2)m+1/2 =
∞∑
n=0

Pm
n+m(z) tn , |t| < 1 , (13)

and satisfy the associated Legendre ODE

(1− z2) d
2y
dz2
− 2z

dy
dz

+

[
n(n+ 1)− m2

1− z2
]
y = 0 . (14)

Such functions capture the θ angular part of spherical harmonics, the
angular solutions from the separation of variables technique for the Laplacian
differential operator ∇2 . The m quantum number is attached, as usual,
to the azimuthal dependence, which can only be single-valued, and the n
quantum number is the constraint for truncated Frobenius’ series solutions
to the associated Legendre ODE.

• The Pm
n (z) possess two sets of orthogonality relations:∫ 1

−1
Pm
p (x)Pm

q (x) dx =
2 δp,q

2q + 1
(q +m)!
(q −m)!

,

(15)∫ 1

−1

Pm
n (x)P k

n (x)
1− x2 dx =

(n+m)!
2m (n−m)!

δm,k , 0 < m ≤ k < n .

• The associated Legendre functions also possess an addition theorem that
is germane to the multiplication of basis vectors connected by a spherical
triangle. It follows from rotation group properties on the sphere, and is a
useful tool for addition of various vector quantities such as angular momenta
in quantum mechanics.
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