
10. SPECIAL FUNCTIONS II:
BESSEL FUNCTIONS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Bessel Functions Jν(x) and Nν(x)

• Bessel functions naturally occur in problems with cylindrical symmetry,
particularly for select differential operators such as the Laplacian ∇2 .

• For select problems, such as the Helmholtz PDE that involves the differen-
tial operator ∇2 +k2 , they occur in spherical polar coordinates too. In each
case, the separation of variable technique employed in distilling solutions to
the PDEs results in the Bessel ODE appearing for a select variable; this shall
become apparent in the Chapter on PDEs.

1.1 Generating Function and Recurrence Relations

It is assumed, as a starting point, that the infinite series representation of A&W
Sec. 11.1the Jn(z) Bessel function is its definition, namely

Jn(z) =
∞∑
s=0

(−1)s

s! (n+ s)!

(
z
2

)n+2s

, n = 0, 1, 2, . . . (1)

for arbitrary z in the complex plane, which is clearly oscillatory in nature.
Consider the Laurent series of the two variable function

g(z, t) ≡ exp

{
z
2

(
t− 1

t

)}
=

∞∑
n=−∞

yn(z) tn . (2)
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To extract the coefficient of the tn term on the LHS, we expand the expo-
nential as a product of two Taylor series:

ezt/2 · e−z/2t =
∞∑
r=0

(
z
2

)r tr
r!

∞∑
s=0

(−1)s
(
z
2

)s t−s
s!

(3)

This double series can be re-labelled by setting r = n + s for each s , with
the restriction n+ s ≥ 0 . The double series is then of the form

∞∑
n=−∞

tn
∞∑
s=0

(−1)s

s! (n+ s)!

(
z
2

)n+2s

Θ(s+ n) . (4)

Here Θ(x) is the Heaviside step function, and is zero for negative arguments.
For n ≥ 0 , one then trivially assigns the coefficients of tn to establish that
yn(z) = Jn(z) in Eq. (1). Accordingly,

g(z, t) ≡ exp

{
z
2

(
t− 1

t

)}
=

∞∑
n=−∞

Jn(z) tn (5)

is termed the generating function for ordinary Bessel functions Jn(z) .

For the n < 0 case, the double series is truncated at s + n = 0 , and
development appears to be more of a problem. If we proceed by using a
substitution t→ −1/t in the generating function, then since this still yields
the same generating function, we have the result

g
(
z, −1

t

)
≡ exp

{
z
2

(
t− 1

t

)}
=

∞∑
n=−∞

J−n(z) t−n , (6)

again validated by the previous algebra for n ≥ 0 . A relabelling of n→ −n
then accesses the negative integers, and the complete result is proven.

• To compute Bessel functions of different indices n , it is often useful to
employ the well-known recurrence relations, which are most easily derived
from derivatives of the generating function. For example,

∞∑
n=−∞

nJn(z) tn−1 =
∂
∂t
g(z, t) =

z
2

(
1 +

1
t2

) ∞∑
n=−∞

Jn(z) tn . (7)
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By relabelling the summations so that all terms have the same power of t ,
one quickly arrives at the recurrence relation (applicable for non-integer n )

Jn−1(z) + Jn+1(z) =
2n
z
Jn(z) . (8)

This can be used to compute Bessel functions of high index, but such a
process is only stable for downward recurrence, in the sense that rounding
errors accumulate with upward recurrence.

• Another recurrence relation can be derived by differentiating with respect
to z :

∞∑
n=−∞

J ′n(z) tn =
∂
∂z

g(z, t) =
1
2

(
t− 1

t

) ∞∑
n=−∞

Jn(z) tn . (9)

The same series index relabelling technique yields

Jn−1(z)− Jn+1(z) = 2 J ′n(z) . (10)

This can routinely be differentiated, and combined with Eq. (8) to derive

x2
d2Jn
dx2

+ x
dJn
dx

+ (x2 − n2) Jn = 0 , (11)

i.e. Bessel’s ODE. This is left as an exercise.

1.2 An Integral Representation

The next result that is derived from the generating function is the prominent A&W
pp. 679-80integral representation for Jn(z) . For this, we set t → eiθ in Eq. (5).

Separating the real and imaginary parts defines two Fourier series:

cos(z sin θ) = J0(z) + 2
∞∑
m=1

J2m(z) cos 2mθ ,

(12)

sin(z sin θ) = 2
∞∑
m=0

J2m+1(z) sin(2m+ 1)θ .
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This then suggests the employment of orthogonality integrations, yielding

1
π

∫ π

0

cos(z sin θ) cosnθ dθ = Jn(z) , n = 0, 2, 4, . . .

(13)
1
π

∫ π

0

sin(z sin θ) sinnθ dθ = Jn(z) , n = 1, 3, 5, . . .

These integrals are identically zero for choices of n (odd, even) alternate to
those indicated. Adding these two together then yields

Jn(z) =
1
π

∫ π

0

cos(nθ − z sin θ) dθ . (14)

From this well-known integral form, the oscillatory character of Jn is evident.
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Figure 1: The Bessel functions Jn(πx) for n = 0, 1, 2, 3 in trending from
left to right, illustrating their oscillatory asymptotic character.

• To establish this more precisely, the integrand can be cast into complex
exponential form, and the method of steepest descents used when z � 1 .
Then the arguments of the exponentials are f(θ) = ±i{z sin θ − nθ} , so
that zero derivative is realized when θ ≈ π/2 , for large z . At this value,
f ′′(θ) ≈ ∓iz = ∓zeiπ/2 . It is then routine to obtain the asymptotic behavior

Jn(z) ≈
√

2
πz

cos
{
z − π

4
(2n+ 1)

}
, z � 1 . (15)

This is clearly quasi-sinusoidal, and the phase offset scales as π/4 + nπ/2 ,
character that is clearly evinced in graphical depictions.
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1.3 Neumann Functions and Wronskians

While the function J−n(z) is clearly proportional to Jn(z) for integer n , it A&W
Sec. 11.3is routinely shown that J−ν(z) is a linearly independent solution of Bessel’s

ODE from Jν(z) if ν is not an integer. In fact it possesses a Laurent series
and not a Taylor series. It is customary to define a Neumann function Nν

(often denoted by Yν ) by the convenient linear combination

Nν(z) =
cos νπ Jν(z)− J−ν(z)

sin νπ
(16)

as the second solution to Bessel’s ODE. As z → 0 , the contribution from
J−ν(z) dominates, and the Laurent series can be used to demonstrate that

Nν(z) = −Γ(ν)
π

(
2
z

)ν
+O(z1−ν) (17)

Such a limit also applies for integer ν , where the mathematical form for
Nn(z) is given in G&R 8.403.2 as an infinite Frobenius series plus a term
proportional to Jn(z) loge(z/2) . This is obtained by applying l’Hopitâl’s
rule to Eq. (16), i.e., setting ν = n+ δ and taking the limit δ → 0 :

Nn(z) =
1
π

{
∂Jν(z)
∂ν

∣∣∣∣∣
ν=n

− (−1)n
∂J−ν(z)
∂ν

∣∣∣∣∣
ν=n

}
(18)

and employing the series expansion for Jn and J−n for integer indices.

∗ The Wronskian analysis (see below) could also be used to determine this.

• The Neumann functions obey the same recurrence relations as the Jn , a
fact that can be simply reduced from the definition in Eq. (16). Accordingly,

Nn−1(z) +Nn+1(z) =
2n
z
Nn(z) ,

(19)
Nn−1(z)−Nn+1(z) = 2N ′n(z) .

These can be used to compute Neumann functions of various indices given
that we know N0(z) , which has a logarithmic divergence as z → 0 .
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• One convenient protocol for computing N0(z) is to use the integral rep-
resentation

Nν(z) = − 2
π

∫ ∞
0

cos (z cosh t− νπ/2) cosh νt dt , |ν| < 1 . (20)

This again suggests oscillatory behavior. There are integral representations
for Nn(z) that are analogous to ones for Jn(z) , but more complicated al-
gebraically. In fact, the analog of Eq. (14) can be used to demonstrate the
asymptotic result

Nn(z) ≈
√

2
πz

sin
{
z − π

4
(2n+ 1)

}
, z � 1 . (21)

Hence, for z � 1 , Nn(z) and Jn(z) are out of phase by π/2 .
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Figure 2: The Neumann functions Nn(πx) for n = 0, 1, 2, 3 in trending from
left to right, illustrating their oscillatory asymptotic character.
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• Since the Bessel and Neumann functions satisfy Bessel’s ODE

x2
d2y
dx2

+ x
dy
dx

+ (x2 − ν2) y = 0 , (22)

they satisfy the Wronskian, which for p(x) = 1/x here is given by

W (x) ≡ y1y
′
2 − y′1y2 ∝ exp

{
−
∫ x

dt
t

}
∝ 1

x
. (23)

One can then choose either J−ν or Nν to represent the second solution, A&W
pp. 702-3given Jν as the first. The constants of proportionality differ for the two

choices, and can be determined by exploring the limiting forms for z → 0 ,
i.e. Jν(z)→ (z/2)ν/Γ(ν + 1) and Nν(z)→ −Γ(ν)(z/2)−ν/π , resulting in

Jν(z)J ′−ν(z)− J ′ν(z)J−ν(z) = −2 sin νπ
πz

,

(24)

Jν(z)N ′ν(z)− J ′ν(z)Nν(z) =
2
πz

.

Remembering the technique for finding the second solution of a linear second
order ODE from the first, we can further establish the identity

Nν(z) = Nν(x)− 2
π
Jν(z)

∫ x

z

dt
t [Jν(t)]

2 , (25)

and an equivalent one for J−ν . These are principally of academic interest
because they apply only to very limited ranges that do not capture any zeros
of Jν , since the integrals are divergent if they do.

∗ However, one niche use of this form is to ascertain the limiting behavior
as z → 0 of Nν(z) given that we know that Jν(z) ≈ (z/2)ν/Γ(ν + 1) in
this domain. When z � x , the Nν(x) term on the RHS of Eq. (25) can be
neglected. One then quickly arrives at Eq. (17), i.e.,

Nν(z) ≈ − 2
π
νΓ(ν) (2z)ν

∫
z

dt
t2ν+1 = −Γ(ν)

π

(
2
z

)ν
. (26)

In fact, Jν and Nν could be interchanged in the second solution formula,
and the converse inference derived.
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2 Modified Bessel Functions Iν(x) and Kν(x)

Wave equations in cylindrical coordinates, or the diffusion equation, often
lead to the appearance of a modified Bessel differential equation for the A&W

Sec. 11.5cylindrical variable ρ :

ρ2
d2y
dρ2

+ ρ
dy
dρ
− (ρ2 + ν2) y = 0 . (27)

The only modification is essentially to replace the independent variable ρ→
iz , so that by viewing the system in the complex plane, the solution is
obviously a modified Bessel function of the first kind:

Iν(z) = e−νiπ/2 Jν
(
z eiπ/2

)
. (28)

The normalization out the front is arbitrary, but is chosen to simplify the
functional dependence near the origin z = 0 . The Taylor series expansion is
obtained by simple adaptation of Eq. (1), i.e.,

Iν(z) =
∞∑
s=0

1
s! (ν + s)!

(
z
2

)ν+2s

. (29)

The absence of the (−1)s factor in each term indicates that Iν is not oscil-
latory in character, but rather exponential. For integer ν , we have

I−n(z) = In(z) . (30)

The recurrence relations our routinely obtained from Eqs. (8) and (10) via
the substitution z → iz , yielding

Iν−1(z)− Iν+1(z) =
2ν
z
Iν(z) ,

(31)
Iν−1(z) + Iν+1(z) = 2 I ′ν(z) .

From these, one can routinely demonstrate that In(z) satisfies the ODE in
Eq. (27), though this is guaranteed by the substitution protocol employed.

Similarly, minimal effort is required to obtain the generating function, em-
ploying z → iz and t→ t/i in the Laurent series in Eq. (2):

g(z, t) ≡ exp

{
z
2

(
t+

1
t

)}
=

∞∑
n=−∞

In(z) tn . (32)
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