10. SPECIAL FUNCTIONS II: BESSEL FUNCTIONS

Matthew Baring - Lecture Notes for PHYS 516, Fall 2022

1 Bessel Functions $\mathbf{J}_{\nu}(\mathbf{x})$ and $\mathbf{N}_{\nu}(\mathbf{x})$

- Bessel functions naturally occur in problems with cylindrical symmetry, particularly for select differential operators such as the Laplacian ∇^{2}.
- For select problems, such as the Helmholtz PDE that involves the differential operator $\nabla^{2}+k^{2}$, they occur in spherical polar coordinates too. In each case, the separation of variable technique employed in distilling solutions to the PDEs results in the Bessel ODE appearing for a select variable; this shall become apparent in the Chapter on PDEs.

1.1 Generating Function and Recurrence Relations

It is assumed, as a starting point, that the infinite series representation of the $J_{n}(z)$ Bessel function is its definition, namely

$$
\begin{equation*}
J_{n}(z)=\sum_{s=0}^{\infty} \frac{(-1)^{s}}{s!(n+s)!}\left(\frac{z}{2}\right)^{n+2 s} \quad, \quad n=0,1,2, \ldots \tag{1}
\end{equation*}
$$

for arbitrary z in the complex plane, which is clearly oscillatory in nature. Consider the Laurent series of the two variable function

$$
\begin{equation*}
g(z, t) \equiv \exp \left\{\frac{z}{2}\left(t-\frac{1}{t}\right)\right\}=\sum_{n=-\infty}^{\infty} y_{n}(z) t^{n} \tag{2}
\end{equation*}
$$

To extract the coefficient of the t^{n} term on the LHS, we expand the exponential as a product of two Taylor series:

$$
\begin{equation*}
e^{z t / 2} \cdot e^{-z / 2 t}=\sum_{r=0}^{\infty}\left(\frac{z}{2}\right)^{r} \frac{t^{r}}{r!} \sum_{s=0}^{\infty}(-1)^{s}\left(\frac{z}{2}\right)^{s} \frac{t^{-s}}{s!} \tag{3}
\end{equation*}
$$

This double series can be re-labelled by setting $r=n+s$ for each s, with the restriction $n+s \geq 0$. The double series is then of the form

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} t^{n} \sum_{s=0}^{\infty} \frac{(-1)^{s}}{s!(n+s)!}\left(\frac{z}{2}\right)^{n+2 s} \Theta(s+n) \tag{4}
\end{equation*}
$$

Here $\Theta(x)$ is the Heaviside step function, and is zero for negative arguments. For $n \geq 0$, one then trivially assigns the coefficients of t^{n} to establish that $y_{n}(z)=J_{n}(z)$ in Eq. (1). Accordingly,

$$
\begin{equation*}
g(z, t) \equiv \exp \left\{\frac{z}{2}\left(t-\frac{1}{t}\right)\right\}=\sum_{n=-\infty}^{\infty} J_{n}(z) t^{n} \tag{5}
\end{equation*}
$$

is termed the generating function for ordinary Bessel functions $J_{n}(z)$.
For the $n<0$ case, the double series is truncated at $s+n=0$, and development appears to be more of a problem. If we proceed by using a substitution $t \rightarrow-1 / t$ in the generating function, then since this still yields the same generating function, we have the result

$$
\begin{equation*}
g\left(z,-\frac{1}{t}\right) \equiv \exp \left\{\frac{z}{2}\left(t-\frac{1}{t}\right)\right\}=\sum_{n=-\infty}^{\infty} J_{-n}(z) t^{-n} \tag{6}
\end{equation*}
$$

again validated by the previous algebra for $n \geq 0$. A relabelling of $n \rightarrow-n$ then accesses the negative integers, and the complete result is proven.

- To compute Bessel functions of different indices n, it is often useful to employ the well-known recurrence relations, which are most easily derived from derivatives of the generating function. For example,

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} n J_{n}(z) t^{n-1}=\frac{\partial}{\partial t} g(z, t)=\frac{z}{2}\left(1+\frac{1}{t^{2}}\right) \sum_{n=-\infty}^{\infty} J_{n}(z) t^{n} \tag{7}
\end{equation*}
$$

By relabelling the summations so that all terms have the same power of t, one quickly arrives at the recurrence relation (applicable for non-integer n)

$$
\begin{equation*}
J_{n-1}(z)+J_{n+1}(z)=\frac{2 n}{z} J_{n}(z) \tag{8}
\end{equation*}
$$

This can be used to compute Bessel functions of high index, but such a process is only stable for downward recurrence, in the sense that rounding errors accumulate with upward recurrence.

- Another recurrence relation can be derived by differentiating with respect to z :

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} J_{n}^{\prime}(z) t^{n}=\frac{\partial}{\partial z} g(z, t)=\frac{1}{2}\left(t-\frac{1}{t}\right) \sum_{n=-\infty}^{\infty} J_{n}(z) t^{n} \tag{9}
\end{equation*}
$$

The same series index relabelling technique yields

$$
\begin{equation*}
J_{n-1}(z)-J_{n+1}(z)=2 J_{n}^{\prime}(z) \tag{10}
\end{equation*}
$$

This can routinely be differentiated, and combined with Eq. (8) to derive

$$
\begin{equation*}
x^{2} \frac{d^{2} J_{n}}{d x^{2}}+x \frac{d J_{n}}{d x}+\left(x^{2}-n^{2}\right) J_{n}=0 \tag{11}
\end{equation*}
$$

i.e. Bessel's ODE. This is left as an exercise.

1.2 An Integral Representation

The next result that is derived from the generating function is the prominent integral representation for $J_{n}(z)$. For this, we set $t \rightarrow e^{i \theta}$ in Eq. (5).

A\&W
pp. 679-80 Separating the real and imaginary parts defines two Fourier series:

$$
\begin{align*}
& \cos (z \sin \theta)=J_{0}(z)+2 \sum_{m=1}^{\infty} J_{2 m}(z) \cos 2 m \theta \\
& \sin (z \sin \theta)=2 \sum_{m=0}^{\infty} J_{2 m+1}(z) \sin (2 m+1) \theta \tag{12}
\end{align*}
$$

This then suggests the employment of orthogonality integrations, yielding

$$
\begin{align*}
& \frac{1}{\pi} \int_{0}^{\pi} \cos (z \sin \theta) \cos n \theta d \theta=J_{n}(z) \quad, \quad n=0,2,4, \ldots \\
& \frac{1}{\pi} \int_{0}^{\pi} \sin (z \sin \theta) \sin n \theta d \theta=J_{n}(z) \quad, \quad n=1,3,5, \ldots \tag{13}
\end{align*}
$$

These integrals are identically zero for choices of n (odd, even) alternate to those indicated. Adding these two together then yields

$$
\begin{equation*}
J_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-z \sin \theta) d \theta \tag{14}
\end{equation*}
$$

From this well-known integral form, the oscillatory character of J_{n} is evident.

Figure 1: The Bessel functions $J_{n}(\pi x)$ for $n=0,1,2,3$ in trending from left to right, illustrating their oscillatory asymptotic character.

- To establish this more precisely, the integrand can be cast into complex exponential form, and the method of steepest descents used when $z \gg 1$. Then the arguments of the exponentials are $f(\theta)= \pm i\{z \sin \theta-n \theta\}$, so that zero derivative is realized when $\theta \approx \pi / 2$, for large z. At this value, $f^{\prime \prime}(\theta) \approx \mp i z=\mp z e^{i \pi / 2}$. It is then routine to obtain the asymptotic behavior

$$
\begin{equation*}
J_{n}(z) \approx \sqrt{\frac{2}{\pi z}} \cos \left\{z-\frac{\pi}{4}(2 n+1)\right\} \quad, \quad z \gg 1 \tag{15}
\end{equation*}
$$

This is clearly quasi-sinusoidal, and the phase offset scales as $\pi / 4+n \pi / 2$, character that is clearly evinced in graphical depictions.

1.3 Neumann Functions and Wronskians

While the function $J_{-n}(z)$ is clearly proportional to $J_{n}(z)$ for integer n, it is routinely shown that $J_{-\nu}(z)$ is a linearly independent solution of Bessel's ODE from $J_{\nu}(z)$ if ν is not an integer. In fact it possesses a Laurent series and not a Taylor series. It is customary to define a Neumann function N_{ν} (often denoted by Y_{ν}) by the convenient linear combination

$$
\begin{equation*}
N_{\nu}(z)=\frac{\cos \nu \pi J_{\nu}(z)-J_{-\nu}(z)}{\sin \nu \pi} \tag{16}
\end{equation*}
$$

as the second solution to Bessel's ODE. As $z \rightarrow 0$, the contribution from $J_{-\nu}(z)$ dominates, and the Laurent series can be used to demonstrate that

$$
\begin{equation*}
N_{\nu}(z)=-\frac{\Gamma(\nu)}{\pi}\left(\frac{2}{z}\right)^{\nu}+O\left(z^{1-\nu}\right) \tag{17}
\end{equation*}
$$

Such a limit also applies for integer ν, where the mathematical form for $N_{n}(z)$ is given in G\&R 8.403 .2 as an infinite Frobenius series plus a term proportional to $J_{n}(z) \log _{e}(z / 2)$. This is obtained by applying l'Hopitâl's rule to Eq. (16), i.e., setting $\nu=n+\delta$ and taking the limit $\delta \rightarrow 0$:

$$
\begin{equation*}
N_{n}(z)=\frac{1}{\pi}\left\{\left.\frac{\partial J_{\nu}(z)}{\partial \nu}\right|_{\nu=n}-\left.(-1)^{n} \frac{\partial J_{-\nu}(z)}{\partial \nu}\right|_{\nu=n}\right\} \tag{18}
\end{equation*}
$$

and employing the series expansion for J_{n} and J_{-n} for integer indices.

* The Wronskian analysis (see below) could also be used to determine this.
- The Neumann functions obey the same recurrence relations as the J_{n}, a fact that can be simply reduced from the definition in Eq. (16). Accordingly,

$$
\begin{align*}
& N_{n-1}(z)+N_{n+1}(z)=\frac{2 n}{z} N_{n}(z), \\
& N_{n-1}(z)-N_{n+1}(z)=2 N_{n}^{\prime}(z) . \tag{19}
\end{align*}
$$

These can be used to compute Neumann functions of various indices given that we know $N_{0}(z)$, which has a logarithmic divergence as $z \rightarrow 0$.

- One convenient protocol for computing $N_{0}(z)$ is to use the integral representation

$$
\begin{equation*}
N_{\nu}(z)=-\frac{2}{\pi} \int_{0}^{\infty} \cos (z \cosh t-\nu \pi / 2) \cosh \nu t d t \quad, \quad|\nu|<1 . \tag{20}
\end{equation*}
$$

This again suggests oscillatory behavior. There are integral representations for $N_{n}(z)$ that are analogous to ones for $J_{n}(z)$, but more complicated algebraically. In fact, the analog of Eq. (14) can be used to demonstrate the asymptotic result

$$
\begin{equation*}
N_{n}(z) \approx \sqrt{\frac{2}{\pi z}} \sin \left\{z-\frac{\pi}{4}(2 n+1)\right\} \quad, \quad z \gg 1 \tag{21}
\end{equation*}
$$

Hence, for $z \gg 1, N_{n}(z)$ and $J_{n}(z)$ are out of phase by $\pi / 2$.

Figure 2: The Neumann functions $N_{n}(\pi x)$ for $n=0,1,2,3$ in trending from left to right, illustrating their oscillatory asymptotic character.

- Since the Bessel and Neumann functions satisfy Bessel's ODE

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-\nu^{2}\right) y=0 \tag{22}
\end{equation*}
$$

they satisfy the Wronskian, which for $p(x)=1 / x$ here is given by

$$
\begin{equation*}
W(x) \equiv y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2} \propto \exp \left\{-\int^{x} \frac{d t}{t}\right\} \propto \frac{1}{x} \tag{23}
\end{equation*}
$$

One can then choose either $J_{-\nu}$ or N_{ν} to represent the second solution, given J_{ν} as the first. The constants of proportionality differ for the two choices, and can be determined by exploring the limiting forms for $z \rightarrow 0$, i.e. $J_{\nu}(z) \rightarrow(z / 2)^{\nu} / \Gamma(\nu+1)$ and $N_{\nu}(z) \rightarrow-\Gamma(\nu)(z / 2)^{-\nu} / \pi$, resulting in

$$
\begin{align*}
J_{\nu}(z) J_{-\nu}^{\prime}(z)-J_{\nu}^{\prime}(z) J_{-\nu}(z) & =-\frac{2 \sin \nu \pi}{\pi z} \\
J_{\nu}(z) N_{\nu}^{\prime}(z)-J_{\nu}^{\prime}(z) N_{\nu}(z) & =\frac{2}{\pi z} \tag{24}
\end{align*}
$$

Remembering the technique for finding the second solution of a linear second order ODE from the first, we can further establish the identity

$$
\begin{equation*}
N_{\nu}(z)=N_{\nu}(x)-\frac{2}{\pi} J_{\nu}(z) \int_{z}^{x} \frac{d t}{t\left[J_{\nu}(t)\right]^{2}} \tag{25}
\end{equation*}
$$

and an equivalent one for $J_{-\nu}$. These are principally of academic interest because they apply only to very limited ranges that do not capture any zeros of J_{ν}, since the integrals are divergent if they do.

* However, one niche use of this form is to ascertain the limiting behavior as $z \rightarrow 0$ of $N_{\nu}(z)$ given that we know that $J_{\nu}(z) \approx(z / 2)^{\nu} / \Gamma(\nu+1)$ in this domain. When $z \ll x$, the $N_{\nu}(x)$ term on the RHS of Eq. (25) can be neglected. One then quickly arrives at Eq. (17), i.e.,

$$
\begin{equation*}
N_{\nu}(z) \approx-\frac{2}{\pi} \nu \Gamma(\nu)(2 z)^{\nu} \int_{z} \frac{d t}{t^{2 \nu+1}}=-\frac{\Gamma(\nu)}{\pi}\left(\frac{2}{z}\right)^{\nu} \tag{26}
\end{equation*}
$$

In fact, J_{ν} and N_{ν} could be interchanged in the second solution formula, and the converse inference derived.

2 Modified Bessel Functions $\mathbf{I}_{\nu}(\mathbf{x})$ and $\mathbf{K}_{\nu}(\mathbf{x})$

Wave equations in cylindrical coordinates, or the diffusion equation, often lead to the appearance of a modified Bessel differential equation for the cylindrical variable ρ :

$$
\begin{equation*}
\rho^{2} \frac{d^{2} y}{d \rho^{2}}+\rho \frac{d y}{d \rho}-\left(\rho^{2}+\nu^{2}\right) y=0 \tag{27}
\end{equation*}
$$

The only modification is essentially to replace the independent variable $\rho \rightarrow$ $i z$, so that by viewing the system in the complex plane, the solution is obviously a modified Bessel function of the first kind:

$$
\begin{equation*}
I_{\nu}(z)=e^{-\nu i \pi / 2} J_{\nu}\left(z e^{i \pi / 2}\right) \tag{28}
\end{equation*}
$$

The normalization out the front is arbitrary, but is chosen to simplify the functional dependence near the origin $z=0$. The Taylor series expansion is obtained by simple adaptation of Eq. (1), i.e.,

$$
\begin{equation*}
I_{\nu}(z)=\sum_{s=0}^{\infty} \frac{1}{s!(\nu+s)!}\left(\frac{z}{2}\right)^{\nu+2 s} \tag{29}
\end{equation*}
$$

The absence of the $(-1)^{s}$ factor in each term indicates that I_{ν} is not oscillatory in character, but rather exponential. For integer ν, we have

$$
\begin{equation*}
I_{-n}(z)=I_{n}(z) \tag{30}
\end{equation*}
$$

The recurrence relations our routinely obtained from Eqs. (8) and (10) via the substitution $z \rightarrow i z$, yielding

$$
\begin{align*}
& I_{\nu-1}(z)-I_{\nu+1}(z)=\frac{2 \nu}{z} I_{\nu}(z) \\
& I_{\nu-1}(z)+I_{\nu+1}(z)=2 I_{\nu}^{\prime}(z) \tag{31}
\end{align*}
$$

From these, one can routinely demonstrate that $I_{n}(z)$ satisfies the ODE in Eq. (27), though this is guaranteed by the substitution protocol employed.

Similarly, minimal effort is required to obtain the generating function, employing $z \rightarrow i z$ and $t \rightarrow t / i$ in the Laurent series in Eq. (2):

$$
\begin{equation*}
g(z, t) \equiv \exp \left\{\frac{z}{2}\left(t+\frac{1}{t}\right)\right\}=\sum_{n=-\infty}^{\infty} I_{n}(z) t^{n} \tag{32}
\end{equation*}
$$

