1.3 Stirling's Series

It is impractical to compute the Gamma function for large arguments using either the limit form or the difference equation $\Gamma(z+1)=z \Gamma(z)$. Instead, we develop an approximation, due to Stirling, that has impressive precision, as we shall see. There are two paths to Stirling's asymptotic series for $\Gamma(z)$. First, the quick one, we use Euler's integral form for the Gamma function and computing it using the method of steepest descent:

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} e^{-f(t, z)} d t \quad, \quad f(t, z)=t-(z-1) \log _{e} t \tag{22}
\end{equation*}
$$

The argument of the exponential peaks at $\partial f / \partial t=1-(z-1) / t=0$, i.e. when $t=z-1$, for which $f^{\prime \prime}(t, z)=1 /(z-1)$. It then quickly follows that

$$
\begin{equation*}
\Gamma(z) \approx \sqrt{2 \pi(z-1)} \exp \left\{-(z-1)+(z-1) \log _{e}(z-1)\right\} \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\log _{e} \Gamma(z) \approx \frac{1}{2} \log _{e} 2 \pi+\left(z-\frac{1}{2}\right) \log _{e} z-z \tag{24}
\end{equation*}
$$

where terms of order $1 / z$ are neglected.

Figure 2: The ratios of the leading order Stirling approximation in Eq. (23) over $\Gamma(z)$ (lower curve), and that with the next order ($1 / 12 z$) correction in Eq. (32) to $\Gamma(z)$ (upper curve), illustrating the precision of Stirling's series.

- The second is the protocol adopted by Arfken \& Weber. We start with the Euler-Maclaurin formula for evaluating a definite integral:

$$
\begin{align*}
\int_{0}^{n} f(x, z) d x= & \frac{1}{2} f(0, z)+f(1, z)+f(2, z)+\ldots+\frac{1}{2} f(n, z) \\
& -\sum_{k=1}^{\infty} \frac{B_{2 k}}{(2 k)!}\left[f^{(2 k-1)}(n, z)-f^{(2 k-1)}(0, z)\right] \tag{25}
\end{align*}
$$

where the $f^{(j)}(x, z)$ are various x derivatives of the (arbitrary) function $f(x, z)$. In this formula, the $B_{2 k}$ are Bernoulli numbers from number theory, defined in Eq. (59) below, with $B_{0}=1, B_{2}=1 / 6, B_{4}=-1 / 30$, etc, and z is a parameter. This result is stated without proof, but is basically a refinement of the trapezoidal rule for integration including the series to define the remainder.

Now apply this result to $f(x, z)=1 /(z+x)^{2}$. Then

$$
\begin{align*}
\frac{n}{z(z+n)}= & \frac{1}{2} f(0, z)+\sum_{k=1}^{n-1} \frac{1}{(z+k)^{2}}+\frac{1}{2} f(n, z) \\
& -\sum_{k=1}^{\infty}(-1)^{2 k-1} \frac{B_{2 k}}{(2 k)!}\left[\frac{(2 k)!}{(z+n)^{2 k+1}}-\frac{(2 k)!}{z^{2 k+1}}\right] \tag{26}
\end{align*}
$$

Now we take the limit $n \rightarrow \infty$ of both sides. Re-labeling the second term on the first line of Eq. (26) via $k \rightarrow m+1$, we see that it approaches the polygamma function, $\psi^{(1)}(z+1)$, so that

$$
\begin{equation*}
\frac{1}{z}=\frac{1}{2 z^{2}}+\psi^{(1)}(z+1)-\sum_{k=1}^{\infty} \frac{B_{2 k}}{z^{2 k+1}} \tag{27}
\end{equation*}
$$

This can be integrated with respect to z and rearranged thus:

$$
\begin{equation*}
\psi(z+1) \equiv \frac{d}{d z}\left\{\log _{e} z \Gamma(z)\right\}=\mathcal{C}_{1}+\log _{e} z+\frac{1}{2 z}-\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k z^{2 k}} \tag{28}
\end{equation*}
$$

To determine the constant of integration, we rearrange slightly, and integrate once more over a finite range arbitrarily close to infinity:

$$
\begin{equation*}
\lim _{\kappa \rightarrow \infty} \int_{\kappa}^{\kappa+1}\left\{\psi(z+1)-\log _{e} z\right\} d z=\lim _{\kappa \rightarrow \infty}\left\{\mathcal{C}_{1}+\frac{1}{2} \log _{e} \frac{\kappa+1}{\kappa}+O\left(\frac{1}{\kappa}\right)\right\} \tag{29}
\end{equation*}
$$

This then establishes that

$$
\begin{aligned}
\mathcal{C}_{1} & =\lim _{\kappa \rightarrow \infty}\left[\log _{e} z \Gamma(z)+z-z \log _{e} z\right]_{\kappa}^{\kappa+1} \\
& =\lim _{\kappa \rightarrow \infty}\left[\log _{e} \frac{(\kappa+1) \Gamma(\kappa+1)}{\kappa \Gamma(\kappa)}+1-(\kappa+1) \log _{e}(\kappa+1)+\kappa \log _{e} \kappa\right](3 \\
& =\lim _{\kappa \rightarrow \infty}\left[1-\kappa \log _{e}\left(1+\frac{1}{\kappa}\right)\right]=0
\end{aligned}
$$

Returning to the indefinite integral of Eq. (28), we have the asymptotic form

$$
\begin{equation*}
\log _{e} \Gamma(z)=\mathcal{C}_{2}+\left(z-\frac{1}{2}\right) \log _{e} z-z+\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k(2 k-1) z^{2 k-1}} \tag{31}
\end{equation*}
$$

This constant of integration is determined by application of the Legendre doubling formula in Eq. (8):

$$
\begin{equation*}
\log _{e} \Gamma(z+1 / 2)+\log _{e} \Gamma(z)=\log _{e}\left\{2^{1-2 z} \Gamma(2 z) \sqrt{\pi}\right\} \tag{32}
\end{equation*}
$$

For each of the Gamma functions, insert Eq. (31), and then take the leading order contribution as $z \rightarrow \infty$. This results in the evaluation (a simple exercise) of $\mathcal{C}_{2}=\left(\log _{e} 2 \pi\right) / 2$. The final result is Stirling's asymptotic series for the Gamma function $\Gamma(z)$:

$$
\begin{equation*}
\log _{e} \Gamma(z)=\frac{1}{2} \log _{e} 2 \pi+\left(z-\frac{1}{2}\right) \log _{e} z-z+\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k(2 k-1) z^{2 k-1}} \tag{33}
\end{equation*}
$$

This is a precise form for computing the Gamma function when $z \gg 1$. Note that G\&R 8.341.1 provides an integral or the series

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k(2 k-1) z^{2 k-1}}=\int_{0}^{\infty}\left(\frac{1}{2}-\frac{1}{t}+\frac{1}{e^{t}-1}\right) \frac{e^{-t z}}{t} d t \tag{34}
\end{equation*}
$$

thereby providing an integral representation for $\log _{e} \Gamma(z)$.

* Backing up a step and working with the derivative, one has the equivalent form for $\psi(z)$ obtainable directly from Eq. (28) with $\mathcal{C}_{1}=0$.

2 Functions Related to $\Gamma(\mathbf{z})$

2.1 Incomplete Gamma and Beta Functions

Generalizing the Euler integral definition of the Gamma function, we can define two incomplete Gamma functions valid in the right half of the complex plane:

$$
\begin{equation*}
\gamma(z, x)=\int_{0}^{x} e^{-t} t^{z-1} d t \quad, \quad \Gamma(z, x)=\int_{x}^{\infty} e^{-t} t^{z-1} d t \tag{35}
\end{equation*}
$$

It is clear that they satisfy the functional relationship

$$
\begin{equation*}
\gamma(z, x)+\Gamma(z, x)=\Gamma(z) \tag{36}
\end{equation*}
$$

Observe that the error function is a special case:

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{1}{\sqrt{\pi}} \gamma\left(\frac{1}{2}, x^{2}\right) \tag{37}
\end{equation*}
$$

- There is also the Beta function, defined by

$$
\begin{equation*}
B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)} \tag{38}
\end{equation*}
$$

An integral form for it can be determined using that for $\Gamma(z)$:

$$
\begin{equation*}
\Gamma(p) \Gamma(q)=\int_{0}^{\infty} e^{-u} u^{p-1} d u \int_{0}^{\infty} e^{-v} v^{q-1} d v \tag{39}
\end{equation*}
$$

Now change variables via $u=x^{2}$ and $v=y^{2}$, and convert the resulting two-dimensional integral to polar coordinates via $x=r \cos \theta, y=r \sin \theta$ such that $d x d y=r d r d \theta$. The result is

$$
\begin{equation*}
\Gamma(p) \Gamma(q)=4 \int_{0}^{\infty} e^{-r^{2}} r^{2 p+2 q-1} d r \int_{0}^{\pi / 2} \cos ^{2 p-1} \theta \sin ^{2 q-1} \theta d \theta \tag{40}
\end{equation*}
$$

for the area mapped over a quarter plane. The radial integral is just a representation of another Γ function, $\Gamma(p+q) / 2$, so rearrangement yields

$$
\begin{equation*}
B(p, q) \equiv \frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}=2 \int_{0}^{\pi / 2} \cos ^{2 p-1} \theta \sin ^{2 q-1} \theta d \theta \tag{41}
\end{equation*}
$$

Observe that the Beta function is symmetric in its arguments, i.e. under the interchange $p \leftrightarrow q$. Using the substitutions $\chi=\cos \theta$ and $t=\chi^{2}$ generates two alternative integral representations:

$$
\begin{equation*}
B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t=2 \int_{0}^{1} \chi^{2 p-1}\left(1-\chi^{2}\right)^{q-1} d \chi \tag{42}
\end{equation*}
$$

- Employing the Beta function, we can efficiently derive Legendre's doubling formula that we have used above. For $p=q=z$, we have

$$
\begin{equation*}
\frac{\Gamma(z) \Gamma(z)}{\Gamma(2 z)}=\int_{0}^{1} t^{z-1}(1-t)^{z-1} d t=2^{2-2 z} \int_{0}^{1}\left(1-s^{2}\right)^{z-1} d s \tag{43}
\end{equation*}
$$

where the substitution $t=(1+s) / 2$ has been used, and then the even integrand used to restrict the integration to the range $[0,1]$. The second integral is just half a Beta function $(p \rightarrow 1 / 2, q \rightarrow z)$, so that

$$
\begin{equation*}
\frac{\Gamma(z) \Gamma(z)}{\Gamma(2 z)}=2^{1-2 z} \frac{\Gamma(1 / 2) \Gamma(z)}{\Gamma(z+1 / 2)} \tag{44}
\end{equation*}
$$

using the second form in Eq. (42). Simplifying and rearranging gives the doubling formula for the Gamma function:

$$
\begin{equation*}
\Gamma(2 z)=\frac{2^{2 z-1}}{\sqrt{\pi}} \Gamma(z) \Gamma(z+1 / 2) \tag{45}
\end{equation*}
$$

There is also a tripling formula that can be found in G\&R 8.335.2. Both are special cases of the product theorem of Gauss and Legendre for $\Gamma(z)$:

$$
\begin{equation*}
\Gamma(n z)=\frac{n^{n z-1 / 2}}{(2 \pi)^{(n-1) / 2}} \prod_{k=0}^{n-1} \Gamma\left(z+\frac{k}{n}\right) \tag{46}
\end{equation*}
$$

This can be proved using the limit form definition of $\Gamma(z)$ together with the infinite product for $\sin \pi z$ (Erdélyi, Vol I, p. 5). If one takes the derivative of the logarithm, this product theorem can be re-written as

$$
\begin{equation*}
\psi(n z)=\log _{e} n+\frac{1}{n} \sum_{k=0}^{n-1} \psi\left(z+\frac{k}{n}\right) \tag{47}
\end{equation*}
$$

This result can be routinely proven using the integral identity in Eq. (20). Integration and exponentiation then yields the functional z-dependence of the product theorem for $\Gamma(n z)$ but not the multiplicative constant \mathcal{C}_{n}.

2.2 Riemann Zeta Function

An important function in number theory that we have already used to test for convergence of series is the Riemann zeta function $\zeta(s)$, defined by

$$
\begin{equation*}
\zeta(s)=\sum_{n=1}^{\infty} n^{-s} \quad, \quad s>1 \tag{48}
\end{equation*}
$$

When $s<2$, the series is slow to converge, and so acceleration algorithms are required. One is the celebrated Euler prime number product, which

A\&W
pp. 382-4 is deduced by first forming

$$
\begin{equation*}
\zeta(s)\left(1-2^{-s}\right)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\ldots-\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\ldots\right) \tag{49}
\end{equation*}
$$

thereby eliminating every second term of the series. Then, one forms

$$
\begin{align*}
\zeta(s)\left(1-2^{-s}\right)\left(1-3^{-s}\right)=1 & +\frac{1}{3^{s}}+\frac{1}{5^{s}}+\ldots \tag{50}\\
& -\left(\frac{1}{3^{s}}+\frac{1}{9^{s}}+\frac{1}{15^{s}}+\ldots\right)
\end{align*}
$$

so that now every third term, i.e. those involving multiples of 3^{s} in the denominators, is deleted. The process can be repeated for every prime number, with an overall remnant of just unity. Rearranging results in Euler's form:

$$
\begin{equation*}
\zeta(s)=\prod_{p=\text { prime }}^{\infty} \frac{1}{1-p^{-s}} \tag{51}
\end{equation*}
$$

For $s>2$ this can be an efficient path to compute $\zeta(s)$. In Mathematica coding, convergence to $\zeta(1.5)=2.61238$ is slow:

```
zetaprod[s_, n_]:= Product[ 1/(1-1/(Prime[k])^ s), {k, 1, n} ]
    zetaprod[1.5, 10] = 2.4366
    zetaprod[1.5, 100] = 2.5845
    zetaprod[1.5, 1000] = 2.6069
    zetaprod[1.5, 10000] = 2.6111
```


Figure 3: The comparison of the difference between the Riemann zeta function $\zeta(s)$ and unity, and the asymptotic tendency 2^{-s} that can be deduced from Euler's prime product formula.

- The product formula automatically implies that $\zeta(s)-1$ asymptotically approaches 2^{-s} as $s \rightarrow \infty$. This is demonstrated graphically.
- More efficient paths for computing $\zeta(s)$ for $s<2$ are afforded by Dirichlet series rearrangements such as

$$
\begin{equation*}
\eta(s) \equiv \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s) \tag{51}
\end{equation*}
$$

so that grouping $n=2 k-1$ and $n=2 k$ terms together leads to

$$
\begin{equation*}
\zeta(s)=\frac{\eta(s)}{1-2^{1-s}}=\frac{1}{1-2^{1-s}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{s}}\left\{1-\left(1-\frac{1}{2 k}\right)^{s}\right\} \tag{52}
\end{equation*}
$$

As k becomes large, this series converges as $k^{-(1+s)}$, and so is reasonably efficient even right down to $s \approx 1$:

```
zetaetaser[s_, n_]:= Sum[(2 k - 1)^(-s) (1 - (1 - 1/2/k)^ s),
    {k, 1, n}]/(1 - 2^(1 - s))
    zetaetaser[1.5, 10] = 2.594
    zetaetaser[1.5, 30] = 2.60875
    zetaetaser[1.5, 100] = 2.61177
```

If one desires greater convergence speed for $\zeta(s)$, then one can manipulate using original (definitional) series for $\zeta(s+1)$. First, use Eq. (52) and form

$$
\begin{equation*}
\left\{1-2^{1-s}\right\} \zeta(s)-\frac{s \zeta(s+1)}{2^{s+1}}=\sum_{k=1}^{\infty}\left[\frac{1}{(2 k-1)^{s}}-\frac{1}{(2 k)^{s}}-\frac{s}{(2 k)^{s+1}}\right] \tag{53}
\end{equation*}
$$

where the series on the RHS now converges as $k^{-(2+s)}$. Now insert Eq. (52) evaluated for $s \rightarrow s+1$, so that its series also converges as $k^{-(2+s)}$. If we define

$$
\begin{equation*}
\mu(s)=\frac{s}{2\left(2^{s}-1\right)} \tag{54}
\end{equation*}
$$

then rearranging the series identity for $\zeta(s)$ yields

$$
\begin{align*}
\zeta(s) & =\lim _{n \rightarrow \infty} \zeta(s, n) \\
\zeta(s, n) & =\frac{1}{1-2^{1-s}} \sum_{k=1}^{n}\left[\frac{2 k-1+\mu(s)}{(2 k-1)^{s+1}}-\frac{2 k+s+\mu(s)}{(2 k)^{s+1}}\right] \tag{55}
\end{align*}
$$

The precision of this accelerated series expansion is impressive: see Fig. 4.

Figure 4: The ratio of the truncated series $\zeta(s, n)$ in Eq. (55) for the Riemann zeta function to $\zeta(s)$, itself, as a function of the number of terms n summed. Cases are $s=1.1,1.2,1.5,2.0$ from bottom to top. Excellent precision is realized for all these s choices by summing only 10 terms.

- It is also possible to define generalized zeta functions, namely via

$$
\begin{equation*}
\zeta(s, q)=\sum_{n=0}^{\infty} \frac{1}{(q+n)^{s}} \quad, \quad s>1 \tag{56}
\end{equation*}
$$

so that $\zeta(s, 1) \equiv \zeta(s)$. It is then quick to establish the integral representation

$$
\begin{equation*}
\zeta(s, q)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \frac{t^{s-1} e^{-q t}}{1-e^{-t}} d t \tag{57}
\end{equation*}
$$

by expressing the denominator of the integrand as a geometric series and then integrating term by term. Such integrals naturally emerge in Bose-Einstein statistics such as for the photon gas, i.e. the Planck spectrum.

* Observe that $\psi^{(m)}(z)=(-1)^{m+1} m!\zeta(m+1, z)$ establishes the relationship between polygamma functions and generalized zeta functions.
- It is interesting to establish the relationship between the Riemann zeta function and the rational fraction Bernoulli numbers B_{n} of number theory. These are defined by the Taylor series expansion

$$
\begin{equation*}
\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} \frac{B_{n} x^{n}}{n!} \tag{58}
\end{equation*}
$$

The only non-zero Bernoulli number with odd index is $B_{1}=-1 / 2$.
A host of trigonometric and hyperbolic functions, and derivatives and integrals possess series that involve Bernoulli numbers in their coefficients. For example, successively setting $x \rightarrow 2 i z$ and $x \rightarrow-2 i z$ in Eq. (58) and adding quickly leads to the series representation

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} B_{2 n} \frac{(2 z)^{2 n}}{(2 n)!}=\frac{z}{\tan z}=1-2 \sum_{n=1}^{\infty}\left(\frac{z}{\pi}\right)^{2 n} \sum_{k=1}^{\infty} \frac{1}{k^{2 n}} \tag{59}
\end{equation*}
$$

The second identity is obtained by recognizing that $\cot z=d / d z\left[\log _{e}(\sin z)\right]$ and using the infinite product representation for $\sin z$. It is then routine to establish the identity

$$
\begin{equation*}
\frac{B_{2 n}}{(2 n)!}=2 \frac{(-1)^{n-1}}{(2 \pi)^{2 n}} \zeta(2 n) \tag{60}
\end{equation*}
$$

From this it follows that $\zeta(2 n)=r_{n} \pi^{2 n}$, where r_{n} is a rational fraction. The series in Eq. (55) can be used to obtain rational approximations to $\pi^{2 n}$.

