
1.3 Stirling’s Series

It is impractical to compute the Gamma function for large arguments using
either the limit form or the difference equation Γ(z + 1) = z Γ(z) . Instead, A&W

Sec. 8.3we develop an approximation, due to Stirling, that has impressive precision,
as we shall see. There are two paths to Stirling’s asymptotic series for
Γ(z) . First, the quick one, we use Euler’s integral form for the Gamma
function and computing it using the method of steepest descent:

Γ(z) =

∫ ∞
0

e−f(t, z) dt , f(t, z) = t− (z − 1) loge t . (22)

The argument of the exponential peaks at ∂f/∂t = 1 − (z − 1)/t = 0 , i.e.
when t = z− 1 , for which f ′′(t, z) = 1/(z− 1) . It then quickly follows that

Γ(z) ≈
√

2π(z − 1) exp
{
−(z − 1) + (z − 1) loge(z − 1)

}
, (23)

or

loge Γ(z) ≈ 1
2

loge 2π +

(
z − 1

2

)
loge z − z , (24)

where terms of order 1/z are neglected.
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Ratio of Stirling's Approximation to Gamma(z)

Figure 2: The ratios of the leading order Stirling approximation in Eq. (23)
over Γ(z) (lower curve), and that with the next order ( 1/12z ) correction in
Eq. (32) to Γ(z) (upper curve), illustrating the precision of Stirling’s series.
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• The second is the protocol adopted by Arfken & Weber. We start with
the Euler-Maclaurin formula for evaluating a definite integral:∫ n

0

f(x, z) dx =
1
2
f(0, z) + f(1, z) + f(2, z) + . . .+

1
2
f(n, z)

(25)

−
∞∑
k=1

B2k

(2k)!

[
f (2k−1)(n, z)− f (2k−1)(0, z)

]
,

where the f (j)(x, z) are various x derivatives of the (arbitrary) function
f(x, z) . In this formula, the B2k are Bernoulli numbers from number
theory, defined in Eq. (59) below, with B0 = 1 , B2 = 1/6 , B4 = −1/30 ,
etc, and z is a parameter. This result is stated without proof, but is basically
a refinement of the trapezoidal rule for integration including the series to
define the remainder.

Now apply this result to f(x, z) = 1/(z + x)2 . Then

n
z (z + n)

=
1
2
f(0, z) +

n−1∑
k=1

1
(z + k)2

+
1
2
f(n, z)

(26)

−
∞∑
k=1

(−1)2k−1
B2k

(2k)!

[
(2k)!

(z + n)2k+1 −
(2k)!
z2k+1

]
,

Now we take the limit n → ∞ of both sides. Re-labeling the second term
on the first line of Eq. (26) via k → m + 1 , we see that it approaches the
polygamma function, ψ(1)(z + 1) , so that

1
z

=
1

2z2
+ ψ(1)(z + 1)−

∞∑
k=1

B2k

z2k+1 . (27)

This can be integrated with respect to z and rearranged thus:

ψ(z + 1) ≡ d
dz

{
loge zΓ(z)

}
= C1 + loge z +

1
2z
−
∞∑
k=1

B2k

2k z2k
. (28)

To determine the constant of integration, we rearrange slightly, and integrate
once more over a finite range arbitrarily close to infinity:

lim
κ→∞

∫ κ+1

κ

{
ψ(z + 1)− loge z

}
dz = lim

κ→∞

{
C1 +

1
2

loge
κ+ 1
κ

+O

(
1
κ

)}
.

(29)
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This then establishes that

C1 = lim
κ→∞

[
loge zΓ(z) + z − z loge z

]κ+1

κ

= lim
κ→∞

[
loge

(κ+ 1)Γ(κ+ 1)
κ Γ(κ)

+ 1− (κ+ 1) loge(κ+ 1) + κ loge κ

]
(30)

= lim
κ→∞

[
1− κ loge

(
1 +

1
κ

)]
= 0

Returning to the indefinite integral of Eq. (28), we have the asymptotic form

loge Γ(z) = C2 +

(
z − 1

2

)
loge z − z +

∞∑
k=1

B2k

2k(2k − 1) z2k−1
. (31)

This constant of integration is determined by application of the Legendre
doubling formula in Eq. (8):

loge Γ(z + 1/2) + loge Γ(z) = loge

{
21−2z Γ(2z)

√
π
}

. (32)

For each of the Gamma functions, insert Eq. (31), and then take the leading
order contribution as z → ∞ . This results in the evaluation (a simple
exercise) of C2 = (loge 2π)/2 . The final result is Stirling’s asymptotic
series for the Gamma function Γ(z) :

loge Γ(z) =
1
2

loge 2π +

(
z − 1

2

)
loge z − z +

∞∑
k=1

B2k

2k(2k − 1) z2k−1
. (33)

This is a precise form for computing the Gamma function when z � 1 . Note
that G&R 8.341.1 provides an integral or the series

∞∑
k=1

B2k

2k(2k − 1) z2k−1
=

∫ ∞
0

(
1
2
− 1
t

+
1

et − 1

)
e−tz

t
dt . (34)

thereby providing an integral representation for loge Γ(z) .

∗ Backing up a step and working with the derivative, one has the equiva-
lent form for ψ(z) obtainable directly from Eq. (28) with C1 = 0 .
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2 Functions Related to Γ(z)

2.1 Incomplete Gamma and Beta Functions

Generalizing the Euler integral definition of the Gamma function, we can
define two incomplete Gamma functions valid in the right half of the A&W

Sec. 8.5complex plane:

γ(z, x) =

∫ x

0

e−t tz−1 dt , Γ(z, x) =

∫ ∞
x

e−t tz−1 dt . (35)

It is clear that they satisfy the functional relationship

γ(z, x) + Γ(z, x) = Γ(z) . (36)

Observe that the error function is a special case:

erf(x) =
1√
π
γ
(

1
2
, x2
)

. (37)

• There is also the Beta function, defined by A&W
Sec. 8.4

B(p, q) =
Γ(p) Γ(q)
Γ(p+ q)

. (38)

An integral form for it can be determined using that for Γ(z) :

Γ(p) Γ(q) =

∫ ∞
0

e−u up−1 du

∫ ∞
0

e−v vq−1 dv (39)

Now change variables via u = x2 and v = y2 , and convert the resulting
two-dimensional integral to polar coordinates via x = r cos θ , y = r sin θ
such that dx dy = r dr dθ . The result is

Γ(p) Γ(q) = 4

∫ ∞
0

e−r
2

r2p+2q−1 dr

∫ π/2

0

cos2p−1 θ sin2q−1 θ dθ (40)

for the area mapped over a quarter plane. The radial integral is just a
representation of another Γ function, Γ(p+ q)/2 , so rearrangement yields

B(p, q) ≡ Γ(p) Γ(q)
Γ(p+ q)

= 2

∫ π/2

0

cos2p−1 θ sin2q−1 θ dθ . (41)
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Observe that the Beta function is symmetric in its arguments, i.e. under the
interchange p↔ q . Using the substitutions χ = cos θ and t = χ2 generates
two alternative integral representations:

B(p, q) =

∫ 1

0

tp−1 (1− t)q−1 dt = 2

∫ 1

0

χ2p−1 (1− χ2)q−1 dχ . (42)

• Employing the Beta function, we can efficiently derive Legendre’s dou-
bling formula that we have used above. For p = q = z , we have

Γ(z) Γ(z)
Γ(2z)

=

∫ 1

0

tz−1(1− t)z−1 dt = 22−2z
∫ 1

0

(1− s2)z−1 ds , (43)

where the substitution t = (1 + s)/2 has been used, and then the even
integrand used to restrict the integration to the range [0, 1] . The second
integral is just half a Beta function ( p→ 1/2 , q → z ), so that

Γ(z) Γ(z)
Γ(2z)

= 21−2zΓ(1/2) Γ(z)
Γ(z + 1/2)

, (44)

using the second form in Eq. (42). Simplifying and rearranging gives the
doubling formula for the Gamma function:

Γ(2z) =
22z−1
√
π

Γ(z) Γ(z + 1/2) . (45)

There is also a tripling formula that can be found in G&R 8.335.2. Both are
special cases of the product theorem of Gauss and Legendre for Γ(z) :

Γ(nz) =
nnz−1/2

(2π)(n−1)/2

n−1∏
k=0

Γ
(
z +

k
n

)
. (46)

This can be proved using the limit form definition of Γ(z) together with the
infinite product for sinπz (Erdélyi, Vol I, p. 5). If one takes the derivative
of the logarithm, this product theorem can be re-written as

ψ(nz) = loge n+
1
n

n−1∑
k=0

ψ
(
z +

k
n

)
. (47)

This result can be routinely proven using the integral identity in Eq. (20).
Integration and exponentiation then yields the functional z -dependence of
the product theorem for Γ(nz) but not the multiplicative constant Cn .
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2.2 Riemann Zeta Function

An important function in number theory that we have already used to test
for convergence of series is the Riemann zeta function ζ(s) , defined by

ζ(s) =
∞∑
n=1

n−s , s > 1 . (48)

When s < 2 , the series is slow to converge, and so acceleration algorithms A&W
pp. 382-4are required. One is the celebrated Euler prime number product, which

is deduced by first forming

ζ(s) (1− 2−s) = 1 +
1
2s

+
1
3s

+ . . .−
(

1
2s

+
1
4s

+
1
6s

+ . . .

)
, (49)

thereby eliminating every second term of the series. Then, one forms

ζ(s) (1− 2−s) (1− 3−s) = 1 +
1
3s

+
1
5s

+ . . .

(50)

−
(

1
3s

+
1
9s

+
1

15s
+ . . .

)
so that now every third term, i.e. those involving multiples of 3s in the de-
nominators, is deleted. The process can be repeated for every prime number,
with an overall remnant of just unity. Rearranging results in Euler’s form:

ζ(s) =
∞∏

p= prime

1
1− p−s . (51)

For s > 2 this can be an efficient path to compute ζ(s) . In Mathematica

coding, convergence to ζ(1.5) = 2.61238 is slow:

zetaprod[s , n ]:= Product[ 1/(1-1/(Prime[k])^ s), {k, 1, n} ]

zetaprod[1.5, 10] = 2.4366

zetaprod[1.5, 100] = 2.5845

zetaprod[1.5, 1000] = 2.6069

zetaprod[1.5, 10000] = 2.6111
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Figure 3: The comparison of the difference between the Riemann zeta func-
tion ζ(s) and unity, and the asymptotic tendency 2−s that can be deduced
from Euler’s prime product formula.

• The product formula automatically implies that ζ(s) − 1 asymptotically
approaches 2−s as s→∞ . This is demonstrated graphically.

• More efficient paths for computing ζ(s) for s < 2 are afforded by Dirichlet
series rearrangements such as

η(s) ≡
∞∑
n=1

(−1)n−1

ns
=
(
1− 21−s) ζ(s) (51)

so that grouping n = 2k − 1 and n = 2k terms together leads to

ζ(s) =
η(s)

1− 21−s =
1

1− 21−s

∞∑
k=1

1
(2k − 1)s

{
1−

(
1− 1

2k

)s}
. (52)

As k becomes large, this series converges as k−(1+s) , and so is reasonably
efficient even right down to s ≈ 1 :

zetaetaser[s , n ]:= Sum[ (2 k - 1)^(-s) (1 - (1 - 1/2/k)^ s),

{k, 1, n}]/(1 - 2^(1 - s))

zetaetaser[1.5, 10] = 2.594

zetaetaser[1.5, 30] = 2.60875

zetaetaser[1.5, 100] = 2.61177
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If one desires greater convergence speed for ζ(s) , then one can manipulate
using original (definitional) series for ζ(s+ 1) . First, use Eq. (52) and form{

1−21−s
}
ζ(s)− s ζ(s+ 1)

2s+1 =
∞∑
k=1

[
1

(2k − 1)s
− 1

(2k)s
− s

(2k)s+1

]
, (53)

where the series on the RHS now converges as k−(2+s) . Now insert Eq. (52)
evaluated for s → s + 1 , so that its series also converges as k−(2+s) . If we
define

µ(s) =
s

2(2s − 1)
, (54)

then rearranging the series identity for ζ(s) yields

ζ(s) = lim
n→∞

ζ(s, n) ,
(55)

ζ(s, n) =
1

1− 21−s

n∑
k=1

[
2k − 1 + µ(s)
(2k − 1)s+1 −

2k + s+ µ(s)
(2k)s+1

]
.

The precision of this accelerated series expansion is impressive: see Fig. 4.
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Figure 4: The ratio of the truncated series ζ(s, n) in Eq. (55) for the Rie-
mann zeta function to ζ(s) , itself, as a function of the number of terms
n summed. Cases are s = 1.1, 1.2, 1.5, 2.0 from bottom to top. Excellent
precision is realized for all these s choices by summing only 10 terms.
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• It is also possible to define generalized zeta functions, namely via

ζ(s, q) =
∞∑
n=0

1
(q + n)s

, s > 1 , (56)

so that ζ(s, 1) ≡ ζ(s) . It is then quick to establish the integral representa-
tion

ζ(s, q) =
1

Γ(s)

∫ ∞
0

ts−1e−qt

1− e−t dt (57)

by expressing the denominator of the integrand as a geometric series and then
integrating term by term. Such integrals naturally emerge in Bose-Einstein
statistics such as for the photon gas, i.e. the Planck spectrum.

∗ Observe that ψ(m)(z) = (−1)m+1m! ζ(m+ 1, z) establishes the relation-
ship between polygamma functions and generalized zeta functions.

• It is interesting to establish the relationship between the Riemann zeta
function and the rational fraction Bernoulli numbers Bn of number theory.
These are defined by the Taylor series expansion

x
ex − 1

=
∞∑
n=0

Bnx
n

n!
. (58)

The only non-zero Bernoulli number with odd index is B1 = −1/2 .

A host of trigonometric and hyperbolic functions, and derivatives and inte-
grals possess series that involve Bernoulli numbers in their coefficients. For
example, successively setting x→ 2iz and x→ −2iz in Eq. (58) and adding
quickly leads to the series representation

∞∑
n=0

(−1)nB2n
(2z)2n

(2n)!
=

z
tan z

= 1− 2
∞∑
n=1

(
z
π

)2n ∞∑
k=1

1
k2n

. (59)

The second identity is obtained by recognizing that cot z = d/dz[loge(sin z)]
and using the infinite product representation for sin z . It is then routine to
establish the identity

B2n

(2n)!
= 2

(−1)n−1

(2π)2n
ζ(2n) . (60)

From this it follows that ζ(2n) = rnπ
2n , where rn is a rational fraction.

The series in Eq. (55) can be used to obtain rational approximations to π2n .
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