
7 Tensors

We now extend this algebra to define a 4-tensor of rank 2 to be a set of 16
quantities T µν , which under coordinate transformations map like a product A&W

Sec. 2.6of two 4-vectors (which are 4-tensors of rank one). One can similarly define
tensors of higher rank, i.e. with more indices. A rank 2 tensor looks like

A0

A1

A2

A3

 · [ B0 B1 B2 B3
]

(58)

This expands to a 4× 4 matrix, and this will be the natural representation
that will be adopted below for tensors suited to the theories of electrody-
namics, fluid dynamics and general relativity.

There are three alternative forms describing a second-rank 4-tensor that ex-
tend the two forms we have encountered for 4-vectors:

T µν : contravariant

T µν or T µ
ν : mixed (59)

Tµν : covariant .

The connection between the different types of components is determined by
the general rule: raising or lowering a space index (1, 2, 3) changes the sign
of the component, while raising or lowering the time index (0) does not. So,

T00 = T 00 , T01 = −T 01 , T11 = T 11 , etc. (60)

Technically, there are two types of mixed components. However, in practice,
these are often identical due to the diagonality of the ηαβ Minkowski metric
tensor (matrix), and so in such cases we represent them without detailed
attention to which index is raised or lowered. We have the relations

T 0
0 = T 00 , T 1

0 = −T 01 , T 0
1 = −T 01 , T 1

1 = −T 11 , etc. (61)

A tensor is symmetric if T µν = T νµ , or is antisymmetric if T µν = −T νµ .
Obviously, the diagonal elements of an antisymmetric tensor are all zero.

∗ For a symmetric tensor, T µν = T µ
ν , so we just write it T µν .
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• In every tensor equation (e.g. Maxwell’s equations in electrodynamics), all
terms must contain identical and identically-placed (i.e., raised or lowered)
free indices, as opposed to dummy indices that are summed over. Free indices
can be shifted up or down to derive alternative forms of the tensor equation,
but such operations must be executed simultaneously to all terms.

The property that tensors map like products of 4-vectors under Lorentz trans-
formations immediately identifies the transformation relations for a 4-tensor
in boosting between two inertial frames K and K ′ :

Tµν =
∂xµ
∂x′α

T ′αβ
∂xν
∂x′β

≡ Λα
µ T
′
αβ Λβ

ν , (62)

where the primes denote evaluation of quantities in the K ′ frame.

∗ Observe that the combined pre- and post-multiplication protocol by
Lorentz boost matrices is needed in order to preserve proper manipulations of
tensor operations on vectors. This is immediately deducible by constructing
the tensors as products of column and row vectors.

∗ Observe also that the boost transformations are also rank 2 tensors, and
the placement of the indices, covariant in both numerator and denominator,
yields contravariant α and β indices in the numerator. This preserves the
signs of the space elements to the Λα

µ that are present in Eq. (50).

• One can form scalars from tensors, just as we did for 4-vectors, by summing
over the indices. This reduces the number of free indices in an operation A&W

Sec. 2.7called index contraction, an example of which is

T ≡ T µµ =
3∑

µ=0

T µµ , (63)

which forms the trace of the tensor matrix. In general, contracting any pair
of indices reduces the rank of a tensor by 2.
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7.1 Special Tensors

Two special tensors are now introduced. The first is the unit 4-tensor δµν ,

δµν =

{
1 , if µ = ν ,

0 , if µ 6= ν .
(64)

This evinces the property that for any four-vector Aν ,

δµνA
ν = Aµ . (65)

One can then raise or lower the indices of this tensor to obtain the metric A&W
Sec. 2.10tensor ( gµν in contravariant form, gµν in covariant form). In flat spacetime,

the metric tensor assumes the familiar Minkowski metric form

gµν = gµν ≡ ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = ηµν . (66)

This now serves as the index raising and lowering operator for 4-vectors:

gαβA
β = Aα , gαβAβ = Aα

(67)
AνAν = gαβA

αAβ = gαβAαAβ .

• A key special property of these tensors is that their form is the same in all
coordinate systems, for example Cartesian and spherical polar configurations.
Yet, specifically, they are invariant under Lorentz transformations:

gµν = Λα
µ gαβ Λβ

ν . (68)

This is easily confirmed using Eq. (50) for the flat spacetime case gµν → ηµν .

• This invariance suggests that metric tensors are tied to the spacetime
geometry. Consider now the space four-vector Aν → dxν . Then we have

ds2 = dxνdxν = gαβdx
αdxβ , (69)

which is the differential form of Eq. (41) for flat spacetime. In a gravitational
field, gµν no longer assumes this simple form, and can in fact be non-diagonal,
for example capturing the frame-dragging arising in the rotating Kerr metric.
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• Another useful special tensor is the completely antisymmetric unit
tensor of 4th rank, εαβγδ . This is the tensor whose components change
sign under the interchange of any two indices. This antisymmetry constraint
renders all components with two identical indices necessarily zero. The nor-
malization property sets its nonzero components to be ±1 .

∗ Yet we still have a freedom of overall sign, so we set ε0123 = 1 .

∗ There are a total of 24 non-vanishing components out of the 256.

There is also an anti-symmetric tensor of 3rd rank εαβγ , that like its 4th
rank counterpart, is also known as the Levi-Civita symbol. .

7.2 Anti-symmetric Tensors

• An anti-symmetric tensor has 12 nonzero components, and the antisym-
metry constraint yields only six independent elements. Therefore, we can
write it in the form

T µν =


0 px py pz
−px 0 −az ay
−py az 0 −ax
−pz −ay ax 0

 , (70)

without loss of generality. This implies that the tensor can be considered as
being constructed using two purely spatial vectors, p and a . We represent
this as two sets, one for each of the covariant and contravariant forms:

T µν = (p, a) , Tµν = (−p, a) . (71)

If we perform a reflection of all the spatial coordinates, then the components
with a single time index (0) switch sign, but those with two spatial indices
(i.e. no temporal ones) do not. This is tantamount to the vector p reversing
directions under reflections (odd parity); it is then called a polar vector
(hence the symbol).

∗ Examples of polar vectors in physics include linear momentum p and
the electric field E (e.g. in a dipole configuration).
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On the other hand, the a vector does not change signs under such a reflection
operation (even parity). If it were a linear superposition of two polar vectors,
it would then itself be polar. Instead, what if it is the cross product of two
vectors: a = b× c ? If both b and c are both polar, then a does not change
sign under this inversion, reproducing its even parity. It is then termed an
axial vector (hence the symbol).

Plot: Polar and axial vectors under reflections

∗ Angular velocity vectors ω × r describing rotations, orbital angular
momentum L = r× p , and the magnetic field B = ∇×A are examples of
axial vectors.1

The cross product serves as a convenient representation of axial vectors, since
then the purely spatial elements of the tensor assume a form ak = bicj− bjci
for cyclic permutation of the indices i, j, k → x, y, z . This then re-distributes
the spatial indices in the positions that exactly match the ak elements given
in T µν above. We emphasize that this is not a unique choice, but it is a
convenient one for electromagnetism, for which cross product structure in
the form of curls appears in the field equations.

∗ Thus, we expect that the fundamental tensor for electromagnetism will
be anti-symmetric, with the electric field components occupying the p ele-
ments and the magnetic field components occupying the a elements.

• Any tensor Tµν can be decomposed into the sum of its symmetric, (Tµν +
Tνµ)/2 , and anti-symmetric, (Tµν − Tνµ)/2 parts. These parts can often
constitute different physical content within one umbrella description, an ex-
ample being the matter and electromagnetic components of the relativistic
energy-momentum tensor.

1See the Feynman Lectures at http://www.feynmanlectures.caltech.edu/I 52.html
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Polar and Axial Vectors
F Damay 

3

For a more general magnetic ordering, the moment distri-
bution mlj associated with the atom j in the crystal unit cell 
number l is a periodic function of space, and can be conve-
niently written as:

m
k

m elj j
i

k
k R

,
. l∑= −

 (11)

(s  =  1 for simpli!cation) (!gure 1). The mk,j are the Fourier 
components of this distribution. The magnetic propagation 
vectors k in this summation are con!ned within the !rst 
Brillouin zone of the Bravais lattice of the crystal unit cell. 
The exponential term and mk,j are complex entities gen-
erally, so that, to keep the magnetic moment mlj real, it is 
then necessary to do the summation over k and  −k. With 
the propagation vector formalism of equation  (11), any 
magnetic structure can be fully described by its magnetic 
propagation vector(s) {k} and the Fourier components mk,j. 
As mentioned, the latters are in general complex, and must 
verify mk,j  =  m*-k,j to ensure the sum is a real vector. In 
practice, most magnetic structures can be described by one 
or two magnetic propagation vectors, sometimes three. In 
!gure 2, a detailed example of the description of a magnetic 
structure with a single propagation vector k  =  (1/2 0 0) is 
given. It clearly shows that the orientation and moments in 
a cell of a crystal are either parallel or antiparallel to that of 
the zeroth cell, and that the magnetic cell is doubled along a 
with respect to the crystal cell. Other examples of descrip-
tion of magnetic structures in terms of k vectors are given in 
section 3.4.

The differential magnetic cross section  can then be  
written as:

( )   ( ) ( ) ( )∑ ∑ τσ π
ν

δ= − −
τ

⊥
⎜ ⎟⎛
⎝

⎞
⎠ NQ

k
F Q Q k

d
dΩ

2M
M

3

0

2
 (12)

with

pfF Q k Q m e eQ r

j

j
i w

M k,
. j j( ) ( )∑τ= + = −

 (13)

Inside each Brillouin zone, magnetic peaks will be located 
in reciprocal points de!ned by Q  =  τ  +  k.

In case of a polarized neutron beam, there are not only a 
nuclear and a magnetic contributions, but also an interference 
term in equation  (1). The fundamental equations  of polar-
ized neutron scattering have been derived independently by 
Blume [12] and Maleyev [13], at the beginning of the six-
ties. The differential cross section  is in this case the sum of 
four terms: a purely nuclear and a purely magnetic ones (as 
in the unpolarized case), a third term, which is an interfer-
ence term between the nuclear and magnetic scattering, and a 
fourth term, called the chiral magnetic term, both depending 
on the incident polarization. The direction and the magnitude 
of the beam polarization can also be affected by the scattering 
process, and can be analyzed [11] to get information on the 
direction of M⊥. The topic of polarized neutron scattering is 
in itself an extremely extensive !eld, and readers are referred 
to [14] and references within to go further. A few illustrative 
examples of its use in magnetic structure determination will 
be given in section 3.

3. Magnetic crystallography

In the 1970’s, three classi!cations schemes were developed 
for describing magnetic structures [15]: the description of 
magnetic structures based on conventional Shubnikov groups 
[16], the description of magnetic structures based on non-
crystallographic groups [15, 17], and the description of mag-
netic structures based on representation analysis [18–22]. Up 
to now the most widely used have been the Shubnikov groups 
and representation analysis.

3.1. Shubnikov magnetic space groups

This description is the closest to conventional crystallography. 
The magnetic moment of an atom can be considered as a so-
called axial vector, associated with a current loop (!gure 3). 
The behavior of the elementary current loop under symmetry 
operators can be deduced from the behavior of the velocity 
vector (red arrows on !gure 3), which is itself a polar vector. 
To describe magnetic symmetry, a new symmetry operator is 
introduced, noted 1’, which #ips the magnetic moment: it is 
called the spin reversal, or time reversal, operator. Any crys-
tallographic magnetic group {M} can then be obtained as a 
subgroup of the outer direct product of {R} ({R}  =  {1, 1′}, 

Figure 2. Antiferromagnetic structure described by propagation 
vector k  =  (1/2 0 0), moments are parallel to b.

Figure 3. Mirror symmetry on polar and axial vectors.
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7.3 Differentiation and Integration

As a last segment of this tensor summary, we touch upon differentiation and
integration. It is straightforward to generalize the gradient operation to posit
a four-gradient of a scalar function φ :

∂µφ ≡
∂φ
∂xµ

=

(
1
c
∂φ
∂t
, ∇φ

)
,

(72)

∂µφ ≡ ∂φ
∂xµ

=

(
1
c
∂φ
∂t
, −∇φ

)
.

These are respectively in covariant and contravariant forms, and define true
4-vectors. Observe the shorthand notation of the differentiation. Lorentz
transformation of such forms will dictate their use as a compact tool for
representing key results in electrodynamics. This is also true in the quantum
domain: e.g. the Dirac equation of QED.

• We can also differentiate four-vectors, and provided that we maintain fa-
miliar protocols with the indices, the result is either a scalar or a tensor. We
usually differentiate a contravariant 4-vector using a covariant derivative, and
this is the four-divergence:

∂µA
µ ≡ ∂Aµ

∂xµ
. (73)

Such forms appear in a covariant construction of Maxwell’s and other elec-
trodynamic equations.

There are four types of integrations that can be constructed using spacetime
dimensions. These increase in dimensions. The simplest is just an integral
over a curve in four-space, so that the element of integration is just the line
element, i.e. dxα . For the others, our familiarity with 3D spatial integra-
tions, and analogies extend to spacetime. In general, the integration elements
are Jacobians for the coordinate transformation from the curvilinear surface
involved to the projected plane in the restricted dimensions. For example, in
2D, one integrates using a surface element

dSαβ ≡
∣∣∣∣ dxα dx′α
dxβ dx′β

∣∣∣∣ = dxαdx
′
β − dx′αdxβ , (74)
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employing the familiar determinant notation for the Jacobian. N.B. primes
here denote alternative coordinate basis as opposed to another inertial frame.

In 3D, the surface element projection is also a determinant:

dSαβγ ≡

∣∣∣∣∣∣
dxα dx′α dx′′α
dxβ dx′β dx′′β
dxγ dx′γ dx′′γ

∣∣∣∣∣∣ . (75)

This is a tensor of rank 3, antisymmetric in all indices.

• The last is an integral over a four-dimensional volume,

d4x = dx0dx1dx2dx3 ≡ cdt dV . (76)

The is clearly a scalar due to the compensation between time dilation and
length contraction. For this reason, it is often convenient to express 3D
integrals as 4D ones with delta functions in the integrands, as needed.

To prove that it is a scalar, i.e. d4x is a Lorentz invariant, we observe that
d4x = J d4x′ , where the Jacobian for the xµ → x′µ transformation, i.e.

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x0
∂x′0

∂x0
∂x′1

∂x0
∂x′2

∂x0
∂x′3

∂x1
∂x′0

∂x1
∂x′1

∂x1
∂x′2

∂x1
∂x′3

∂x2
∂x′0

∂x2
∂x′1

∂x2
∂x′2

∂x2
∂x′3

∂x3
∂x′0

∂x3
∂x′1

∂x3
∂x′2

∂x3
∂x′3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (77)

Each of the elements of this determinant is a constant because of the lin-
earity of the form of Lorentz transformations. The determinant can be ex-
pressed as a product of simpler determinants corresponding to rotations in
two coordinates: the overall transformation is a sequence of more elementary
Lorentz boosts and rotations. These more elementary rotations in 4D space-
time clearly have determinants equal to unity as all rotations do, whether
they involve real or imaginary angles. Thus d4x is a Lorentz invariant under
generalized rotations.
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