
8. VECTORS, MATRICES
AND TENSORS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Linear Vector Spaces: Review

Reading Review: Content of this section is posted on-line.

2 Linear Operators and Matrices: Review

Reading Review: Content of this section is posted on-line.
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3 Eigenvalue Problems

Now we explore special cases where linear operators leave select vectors in- A&W
Sec. 3.5variant in direction under the prescribed transformation. These are termed

eigenvalue problems. Define a column vector ~x in an n-dimensional vector
space via

~x =


x1
x2
...
xn

 (1)

Then, for a linear operator

A ≡


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann

 (2)

we can form another vector in the same space

~y = A ~x =


A11x1 +A12x2 + · · ·+A1nxn
A21x1 +A22x2 + · · ·+A2nxn

...
An1x1 +An2x2 + · · ·+Annxn

 . (3)

In general, ~y is linearly independent of ~x , i.e. ~y 6= λ~x for constant λ .
However, in special cases, ~y = A ~x = λ~x . Then the scalar λ is termed
an eigenvalue of the operator A , and ~x is said to be the corresponding
eigenvector (characteristic vector) of this operator.

• Such eigenvectors are preferred vectors: they do not change their com-
ponents (up to the scaling of the eigenvalues) under the application of the
operator. This desirable character connects to natural modes of a system if
the operator is the differential operator characterizing the equation of motion.

∗ Examples abound in quantum mechanics, for example where kinetic en-
ergy, angular momentum and spin operators appear. Eigenvalues then con-
stitute quantized physical quantities.
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We can recast the eigenvector/eigenvalue equation in matrix language as
(A− λI) ~x = ~0 , where

I ≡


1 0 . . . 0

0 1 . . .
...

...
...

. . . 0
0 . . . 0 1

 (4)

is the diagonal identity matrix. Note that I commutes with everything. The
eigenvalue equation (A − λI) ~x = ~0 has non-trivial solutions if and only if
the determinant of the corresponding matrix is zero:∣∣∣A− λI∣∣∣ = 0 . (5)

This is known as the secular or characteristic equation. In general, this
is an nth order algebraic equation for λ with n roots in the complex plane.
The roots are not necessarily distinct.

• To solve a given eigenvalue problem, first solve the characteristic equa-
tion for the eigenvalues λi , i = 1, 2, . . . n , and then plug each λi into the
eigenvalue equation to find the corresponding eigenvectors.

∗ Observe that this gives n− 1 ratios of components of each eigenvector,
i.e. it determines their “directions” but not their magnitudes. This is due to
the linearity of the eigenvalue equation: if ~x is an eigenvector, then so also
is any scalar multiple of ~x .

• Example 1: For the Hermitian operator

A ≡

 0 1 0
1 0 0
0 0 0

 (6)

the secular equation is ∣∣∣∣∣∣
−λ 1 0
1 −λ 0
0 0 −λ

∣∣∣∣∣∣ = 0 , (7)
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which reduces to λ(λ2 − 1) = 0 , i.e. yields eigenvalues λ = −1, 0, 1 . For
λ = −1 we have  1 1 0

1 1 0
0 0 1

 x11
x12
x13

 =

 0
0
0

 . (8)

This yields x11 + x12 = 0 and x13 = 0 . The result is

~x1 =
1√
2

 1
−1
0

 for λ = −1 . (9)

Observe that this can be multiplied by any constant to also yield a “parallel”
eigenvector; the present choice is of unit normalization. Likewise for λ = 0 0 1 0

1 0 0
0 0 0

 x21
x22
x23

 =

 0
0
0

 , (10)

yielding x21 = x22 = 0 and x23 = 1 , or an arbitrary constant. Then

~x2 =

 0
0
1

 for λ = 0 . (11)

Finally, for λ = +1 , −1 1 0
1 −1 0
0 0 −1

 x31
x32
x33

 =

 0
0
0

 . (12)

This yields x31 − x32 = 0 and x33 = 0 . The result is

~x3 =
1√
2

 1
1
0

 for λ = 1 . (13)

Observe that ~xi . ~xj = δij , i.e. these are orthonormal eigenvectors.

• In the above example, all the eigenvalues are real and distinct: this con-
venient circumstance is not guaranteed and is often not realized.
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3.1 Gram-Schmidt Orthogonalization

For cases with degenerate eigenvalues, we develop an efficient protocol for A&W
pp. 173-4isolating two linearly independent eigenvectors for the same eigenvalue.

• Example 2: Consider the Hermitian operator

A ≡

 1 0 0
0 0 1
0 1 0

 . (14)

Its secular equation is ∣∣∣∣∣∣
1− λ 0 0

0 −λ 1
0 1 −λ

∣∣∣∣∣∣ = 0 , (15)

which solves to (1 − λ) (λ2 − 1) = 0 , i.e. yields eigenvalues λ = −1, 1, 1 .
For λ = −1 we have 2 0 0

0 1 1
0 1 1

 x11
x12
x13

 =

 0
0
0

 . (16)

This yields x12 + x13 = 0 and x11 = 0 . The result is

~x1 =
1√
2

 0
1
−1

 for λ = −1 . (17)

For λ = 1 we repeat the process: 0 0 0
0 −1 1
0 1 −1

 x21
x22
x23

 =

 0
0
0

 . (18)

This yields x22 − x23 = 0 and x21 = 0 (arbitrary choice). The result is

~x2 =
1√
2

 0
1
1

 for λ = 1 . (19)
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Observe that ~x1 . ~x2 = 0 . To arrive at a third, mutually orthogonal eigen-
vector try ~x3 = ~x1×~x2 = (1, 0, 0) . This does satisfy the eigenvalue equation
for λ = 1 , and automatically is orthogonal to the other two eigenvectors.

An alternative and more general way to find ~x3 is to choose a trial vector
~x3T that is independent of the two known eigenvectors, for example

~x3T = a

 1
1
1

 . (20)

and define (for the convenient choice of a = 1/
√

3 )

~y3 = ~x3T − (~x3T . ~x2) ~x2 =
1√
3

 1
1
1

− 1√
3

 0
1
1

 . (21)

This is just ~x3T minus its projection onto ~x2 in the direction of the latter
vector; since

~y3 . ~x2 =
{

1− |~x2|2
}

(~x3T . ~x2) , (22)

it is necessarily orthogonal to ~x2 if ~x2 is of unit normalization. Now form
the vector ~x3 = ~y3/|~y3| of unit normalization. The result is (as above)

~x3 =

 1
0
0

 . (23)

Observe that this protocol could adopt ~x1 to define ~x3T , instead of ~x2 , and
would then still end up with the same result.

• This is an example of the Gram-Schmidt orthogonalization proce-
dure, which works for dimensions higher than n = 3 also. For an m-fold
degenerate set of eigenvalues, we can exploit the arbitrariness of the eigen-
vectors to create a set of m linearly independent eigenvectors, then use the
Gram-Schmidt procedure to convert these into m orthogonal eigenvectors.

• Comparison of the Gram-Schmidt technique to using the cross product ap-
proach in this case indicates comparable computational involvement. How-
ever, for vectors of much larger dimensions, the cross product approach re-
quires of the order of n2 computations, and the Gram-Schmidt method is of
the order of 3n tasks so that it becomes much more efficient.
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4 Hermitian Matrices and Diagonalization

The next goal is to determine when the n eigenvalues of an operator are A&W
Sec. 3.5real. This is an important case since it establishes conditions under which

we can define physically meaningful quantities such as quantum numbers.

Theorem: If H is a Hermitian operator, i.e., H† = H (real-symmetric),
then (a) its eigenvalues are real, and (b) the eigenvectors associated with
different eigenvalues are orthogonal.

Proof: For two eigenvector/eigenvalue pairs we have the identities

H ~xi = λi~xi , i = 1, 2
(24)

(~xj)
†H ~xi = λi (~xj)

† ~xi , i 6= j .

We then form the complex conjugate of the second of these:{
(~x2)

†H ~x1
}∗

=
∑
k,l

{x∗2kHklx1l}∗ =
∑
k,l

x∗1lH∗klx2k

(25)
=

∑
k,l

x∗1lHlkx2k = (~x1)
†H ~x2 .

We then apply the first equation in Eq. (24) to this to get

λ∗1

{
(~x2)

† ~x1

}∗
= λ2 (~x1)

† ~x2 , (26)

from which it follows that

{λ∗1 − λ2} (~x1)
† ~x2 = 0 since

{
(~x2)

† ~x1

}∗
= (~x1)

† ~x2 . (27)

∗ It immediately follows that (a) if λ1 = λ2 and the corresponding eigen-
vectors are identical, then since (~x1)

† ~x1 > 0 and λ∗1 = λ1 , i.e. λ1 is real.

∗ It also can be concluded that (b) if λ1 6= λ2 , then (~x1)
† ~x2 = 0 , i.e. the

two eigenvectors are orthogonal. QED

• Illustrations of these properties of Hermitian matrices are contained in the
two previous examples.
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• If we transform to a new coordinate system with basis vectors ~e ′ = γ ~e ,
then any eigenvectors ~xi of an operator A transform via ~xi

′ = γ−1~xi . Then,

A ~xi = λi~xi ⇒
{
γ−1A γ

}
γ−1~xi = λiγ

−1~xi ⇒ A′ ~xi′ = λi~xi
′ , (28)

since A′ = γ−1A γ is our similarity transformation. Hence the eigenvalues
and eigenvectors of A are independent of the coordinate system.

∗ An important consequence is that key physical properties such as conser-
vation of angular momentum are not dependent on the choice of coordinates.

• If we choose ~ei
′ to be the orthogonal eigenvectors of A , then A′~ei′ = λi~ei

′

so that the orthogonality implies A′ij = λjδij . Accordingly, A′ = γ−1A γ is
diagonal, and the diagonal elements are the eigenvalues. The transformation
matrix is

γ =

(
~e1
′ ~e2

′ . . . ~en
′

↓ ↓ ↓

)
, (29)

i.e. its columns are the eigenvectors of A . Therefore, the eigenvalues of an
operator are invariant under a similarity transformation.

• A Hermitian operator H can always be diagonalized by the uni-
tary transformation H′ = γ−1H γ , where the columns of γ are the
eigenvectors of H . This is an important result. A major motivation for
eigenvalue/eigenvector determination for Hermitian operators becomes ap-
parent – we can form γ , diagonalize H and then invert to solve the system.

• Example 3: The solution of simultaneous equations can now be formu-
lated. These can be written in the matrix form

~y = A ~x . (30)

Now define a coordinate transformation with matrix γ given by the eigen-
vectors of A . Since ~x = γ~x ′ and ~y = γ~y ′ , it follows that

A γ~x ′ = ~y = γ~y ′ ⇒
{
γ−1A γ

}
~x ′ = γ−1~y = ~y ′ . (31)

The similarity transformation yields a diagonal A′ ≡ γ−1A γ , so that the
values for ~x ′ can immediately be read off. It then follows that the solution
~x = γ~x ′ can be quickly obtained. Once the eigenvectors are obtained, only
matrix multiplications are involved in this process.
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• Example 4: As an example of diagonalization, consider the operator in
Example 2:

A ≡

 1 0 0
0 0 1
0 1 0

 . (32)

The orthonormal eigenvalues are already assembled there, so that the trans-
formation matrix can be written in the form

γ ≡


0 0 1

1√
2

1√
2

0

− 1√
2

1√
2

0

 . (33)

This has an inverse

γ−1 ≡


0

1√
2
− 1√

2

0
1√
2

1√
2

1 0 0

 . (34)

Routine matrix algebra then yields a transformed operator

A′ ≡ γ−1A γ =

 −1 0 0
0 1 0
0 0 1

 , (35)

wherein the diagonal elements are the eigenvalues of both A and A′ .
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