
1.2 Laplace Transform Applications

The application of Laplace transforms to ordinary differential equations is
illustrated by the example of an LRC circuit driven by a square pulse. The
circuit is controlled by a switch that is closed at time t = 0 , and opened at
time t = T .

Figure 1: The LRC circuit considered in the illustration of Laplace transform
usage, with a potential drop E0 → v(t) .

The voltage v(t) is described by the integro-differential equation

v(t) = L
di
dt

+R i(t) +
q(t)
C

=

{ 0 , t < 0,
V0 , 0 < t < T ,
0 , T < t .

(23)

Here i is the current, q the charge in the circuit, and R is the resistance of
the resistor, L is the inductance of the inductor, and C is the capacitance
of the capacitor. The charge and the current are related by

dq
dt

= i(t) , (24)

which when combined with Eq. (23) yields a 2nd order ODE.

Define the Laplace transforms

I(s) ≡ L [i(t)] , Q(s) ≡ L [q(t)] ,
(25)

V (s) ≡ L [v(t)] = V0

∫ T

0

e−st dt =
V0
s

(
1− e−sT

)
.
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Then the Laplace transforms of Eqs. (23) and (24) yield the simultaneous
algebraic equations

L
{
s I(s)− i(0)

}
+RI(s) +

Q(s)
C

= V (s)

(26)
sQ(s)− q(0) = I(s) .

The initial conditions will be supposed to be i(0) = 0 = q(0) , quiescent
beginnings. Then[

Ls+R +
1
sC

]
I(s) =

V0
s

(
1− e−sT

)
, (27)

This solves as

I(s) =
V0
L

1− e−sT
(s+ α)2 + ω2 , (28)

where we have defined

α =
R
2L

, ω2 =
1
LC
− R2

4L2 . (29)

There are three cases for solution, based on the sign of ω2 . While the
integration of Eq. (28) could be evaluated using known identities, here the
inverse Laplace transforms are used for illustrative purposes.

(a) ω2 > 0 , which corresponds to an oscillatory solution. Then I(s) has
simple poles at s = −α± iω . To obtain the inverse Laplace transforms, the
contour path is chosen as s = c+ iy , where the constant c > −α places this
contour to the right of the poles. Then

i(t) =
1

2πi

∫ c+i∞

c−i∞

V0
L

1− e−sT
(s+ α)2 + ω2 e

st ds

(30)

=
V0

2πi L

[∫ c+i∞

c−i∞

est ds
(s+ α)2 + ω2 −

∫ c+i∞

c−i∞

es(t−T ) ds
(s+ α)2 + ω2

]
.

For t < 0 , both contours must be closed to the right, thus enclosing no
poles. Accordingly, i(t) = 0 for t < 0 , as is obviously required.
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For 0 < t < T , the second integral must be closed to the right, as before,
and again contributes zero. However, the first integral must be closed to the
left, thereby enclosing both poles. Two residues come into play, so that

i(0 < t < T ) =
V0

2πi L
2πi
[

Res(−α + iω) + Res(−α− iω)
]

(31)

=
V0
L

[
e(−α+iω)t

2iω
+
e(−α−iω)t

(−2iω)

]
=

V0
ωL

e−αt sinωt .

This solution displays a ringing oscillation, driven largely by the feedback
between the capacitance and the inductance, being damped by the resistance.

For t > T , both integrals must be closed to the left, again surrounding both
poles. The first integral is identical to that in Eq. (31), while the second is
of the same form, but with the substitution t→ t− T . Collecting results,

i(t) =
V0
ωL

[
H(t) e−αt sinωt−H(t− T ) e−α(t−T ) sinω(t− T )

]
, (32)

where

H(t) =

{
1 , t > 0 ,
0 , t ≤ 0 ,

(33)

is the Heaviside step function. The solution therefore exhibits not only a
driven ringing, but also a residual one due to the abrupt shutoff of the voltage.

We now illustrate these solutions using Mathematica (code below). This
oscillatory domain is depicted in Fig. 2, where partial damping is apparent,
as is the “negative” response to the switching off the voltage pulse.

ioscill[alp , w , t , tt ]:=(

HeavisideTheta[t] Exp[-alp t] Sin[w t] -

HeavisideTheta[t - tt] Exp[-alp (t - tt)] Sin[w (t - tt)] )/w

Plot[ ioscill[1.0, 3 Pi/2, t, Pi/2], {t, 0, 2 Pi},
AxesLabel -> {t, i[t]},
PlotLabel -> "LRC Current: oscillatory domain"]
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Figure 2: The LRC circuit solution for the current, obtained using Laplace
transforms, for the specific case of the oscillatory behavior in Eq. (32).

(b) When ω2 < 0 , corresponding to an overdamped case, we can define
β2 = −ω2 > 0 and adapt the previous analysis merely by employing the
substitution ω → iβ . The result is

i(t) =
V0
βL

[
H(t) e−αt sinh βt−H(t− T ) e−α(t−T ) sinh β(t− T )

]
. (34)

In this case, the resistance dominates the response to the voltage switch and
strongly damps out the driver, rendering the capacitance largely ineffective.

This domain of solution behavior is again illustrated using Mathematica

coding, depicted in Fig. 3. Overwhelming damping is apparent, as is the
“negative” response to the switching off the voltage pulse.

ioverdamp[alp , w , t , tt ]:=(

HeavisideTheta[t] Exp[-alp t] Sinh[w t] -

HeavisideTheta[t - tt] Exp[-alp (t - tt)] Sinh[w (t - tt)] )/w

Plot[ ioscill[1.0, Pi/8, t, Pi/2], {t, 0, 2 Pi},
AxesLabel -> {t, i[t]},
PlotLabel -> "LRC Current: overdamping domain"]
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Figure 3: The LRC circuit solution for the current, obtained using Laplace
transforms, for the specific case of the overdamped behavior in Eq. (34).

(c) The critically-damped case of ω2 = 0 can be deduced from the above
simply by taking the limit ω → 0 (or β → 0 ), so that

i(t) =
V0
L

[
Θ(t) e−αt −Θ(t− T ) e−α(t−T )

]
, Θ(τ) ≡ τH(τ) . (35)

The positive (and shutoff) response is then one of a slowly-driven rise (Spring)
followed by a slow damping, never quite achieving oscillatory ringing.

• One can also solve for the charge q(t) , which is the integral of the current.
In all cases, since there is a simple offset in time because of the gate being
opened, the charge asymptotically tends to zero at infinite times, so that no
potential is left on the capacitor.
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2 Dispersion Relations

The concept of dispersion relations historically arose in physics in the study A&W
Sec. 7.2of optics in material media, with the work of Kramers and Kronig. It is a

natural forum for the use of Hilbert transforms since the index of refraction
often introduces an inverse dependence on photon frequency, and the light
waves can be described by superpositions of complex exponentials.

2.1 Hilbert Transforms

The Cauchy integral formula for an analytic function f(z) can be specialized
to test points along the real axis. Assume that

|f(z)| < a |z|−α with α > 1 as |z| → ∞ (36)

to guarantee boundedness in the upper half plane. In this case, the real
and imaginary parts of f(z) can be related by integral fomulae that estab-
lish Hilbert transform pairs. This development is the integral analog of the
Cauchy-Riemann conditions. We start with

f(z0) =
1

2πi

∮
f(z)
z − z0

dz . (37)

Now we choose a semi-circular contour closed in the upper half plane, with a
straight line segment along the real axis. Then the Residue theorem account
for evaluation of the integral in two cases, depending on the sign of the
imaginary part of z0 . The real line portions are therefore

1
2πi

∫
f(x)
x− z0

dx = f(z0) , Im(z0) > 0

(38)
1

2πi

∫
f(x)
x− z0

dx = 0 , Im(z0) < 0 .

Next, we let Im(z0) → 0. This can be done by considering infinitesimal
loops around z0 → x0 , and the result is (obviously) that the integral ap-
proaches the average of the two evaluations in Eq. (38). This is equivalent
to considering a semi-circular contour segment Cε encroaching upon x0 .
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The principal value of the real line integral emerges:

f(x0) =
1
πi
P
∫ ∞
−∞

f(x)
x− x0

dx , (39)

Then we can take real and imaginary parts, with f = u+ iv , so that the u
and v functions can be related by integral forms, instead of differential ones:

u(x0) =
1
π
P
∫ ∞
−∞

v(x)
x− x0

dx ,

(40)

v(x0) = − 1
π
P
∫ ∞
−∞

u(x)
x− x0

dx .

Clearly, u and v are Hilbert transforms of each other, and knowing either
implies knowing the other.

It is common in applications that the function f(x) has an explicit symmetry
relation of the form

f(−x) = f ∗(x) . (41)

For example, if f(x) involves a complex exponential, or a Fourier transform,
then this relation applies; i.e. studies of plane waves and their superpositions
afford this special case. Then, the integrals on the interval (−∞, 0] can be
recast using the substitution x→ −x to sample the interval [0, ∞) , namely
via

u(−x) = u(x) , v(−x) = −v(x) . (42)

Then the integral transform pair assumes the form

u(x0) =
1
π
P
∫ ∞
0

v(x)

(
1

x− x0
+

1
x+ x0

)
dx ,

(43)

v(x0) = − 1
π
P
∫ ∞
0

u(x)

(
1

x− x0
− 1
x+ x0

)
dx .

i.e.,

u(x0) =
2
π
P
∫ ∞
0

x v(x)
x2 − x20

dx ,

(44)

v(x0) = − 2
π
P
∫ ∞
0

x0 u(x)
x2 − x20

dx .

This was the original form of the Kramers-Kronig dispersion relations.
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2.2 Optical Dispersion

The classic example of the use of such relations is the transmission of light
in material media. Light waves are superpositions of complex exponentials
exp[i(kx − ωt)] . Linearization of the solutions of Maxwell’s equations for
light propagating in conductive media defines the dielectric properties of the
medium:

k2 =
ω2

c2

(
1 + i

4πσ
ω

)
. (45)

Here σ is the medium’s electrical conductivity. The appearance of imaginary
terms originates in the linear derivatives for the displacement current, etc.

The refractive index of the medium n = ck/ω clearly departs from unity:

n =

(
1 + i

4πσ
ω

)1/2

(46)

Accordingly, light does not travel at c , but at a smaller phase velocity ω/k =
c/n . Moreover, the speed depends on ω so that the medium is said to be
dispersive. In addition, observe that ω is, in general, complex.

Choosing f ≡ u+ iv = n2− 1 as our analytic function, the Kramers-Kronig
relations can be written in the form

Re
[
n2(ω0)− 1

]
=

2
π
P
∫ ∞
0

ω Im
[
n2(ω)− 1

]
ω2 − ω2

0

dω ,

(47)

Im
[
n2(ω0)− 1

]
) = − 2

π
P
∫ ∞
0

ω0 Re
[
n2(ω)− 1

]
ω2 − ω2

0

dω .

The real part describes the deviation of the phase speed from c . The imag-
inary part then marks imaginary contributions to ω for real k . In the
complex exponential eiωt , these then define growth or decay (damping) in-
fluences of the plasma on the wave.

• Growth ⇒ instability, while decay ⇒ dissipative absorption.
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• Example 1: The principal values encountered in dispersion relation in-
tegrals offer potential difficulties for numerical evaluation. This example
illustrates how to develop an algorithm to evaluate

I = P
∫ ∞
0

f(ω) dω
ω2 − ω2

0

(48)

numerically. The trick is to transform the integral in the neighborhood of
ω = ω0 :

I = ∆ +

∫ ω0(1−ε)

0

f(ω) dω
ω2 − ω2

0

+

∫ ∞
ω0(1+ε)

f(ω) dω
ω2 − ω2

0

(49)

for

∆ = P
∫ ω0(1+ε)

ω0(1−ε)

f(ω) dω
ω2 − ω2

0

. (50)

The principal value can formally be written as a limiting value:

∆ = lim
δ→0

{∫ ω0(1−δ)

ω0(1−ε)

f(ω) dω
ω2 − ω2

0

+

∫ ω0(1+ε)

ω0(1+δ)

f(ω) dω
ω2 − ω2

0

}
. (51)

Now we rescale the integrands by setting ω = ω0(1− x) and ω = ω0(1 + x)
in the respective integrals. Then

∆ = lim
δ→0

{
1
ω0

∫ ε

δ

f(ω0[1 + x]) dx
x(2 + x)

− 1
ω0

∫ ε

δ

f(ω0[1− x]) dx
x(2− x)

}
(52)

=
1
ω0

∫ ε

0

dx
x

{
f(ω0[1 + x])

2 + x
− f(ω0[1− x])

2− x

}
.

For functions f(ω) that are smooth at ω = ω0 , the factor in curly braces
scales as x as x → 0 , and the ∆ integration is amenable to numerical
techniques. A Taylor series expansion for f about ω0 can be employed to
ascertain the analytic limit of ∆/ε as ε→ 0+ :

lim
ε→0+

∆
ε

= f ′(ω0)−
f(ω0)
2ω0

⇒ ∆ → 0 as ε → 0+ . (53)

This serves as a useful check: in practice, one can never take ε → 0 since
this just reintroduces the numerical divergence issues.
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