
To prove Parseval’s Theorem, we make use of the integral identity for the
Dirac delta function.∫ ∞
−∞

∣∣∣f(x)
∣∣∣2 dx =

∫ ∞
−∞

f(x) f ∗(x) dx

=

∫ ∞
−∞

dx

{
1√
2π

∫ ∞
−∞

g(s) eixs ds

}
×
{

1√
2π

∫ ∞
−∞

g∗(s′) e−ixs
′
ds′
}

(35)

=

∫ ∞
−∞

ds g(s)

∫ ∞
−∞

ds′ g∗(s′)
1

2π

∫ ∞
−∞

eix(s−s
′) dx

=

∫ ∞
−∞

ds g(s)

∫ ∞
−∞

ds′ g∗(s′) δ(s− s′) =

∫ ∞
−∞

∣∣∣g(s)
∣∣∣2 ds .

• Example 4: The Fourier transform of a Gaussian is another Gaussian.
To demonstrate this, we start with A&W

p. 932
f(x) =

1

σ
√

2π
e−x

2/2σ2

, (36)

of unit normalization, and a width (standard deviation) ∆x ∼ σ . Then

g(s) =
1√
2π

∫ ∞
−∞

f(x) e−ixs dx

=
1

2πσ

∫ ∞
−∞

e−x
2/2σ2−ixs dx

=
1

2πσ

∫ ∞
−∞

exp

{
− 1

2σ2

[
(x+ σ2is)2 + σ4s2

]}
dx (37)

=
1

2πσ
e−σ

2s2/2

∫ ∞+iσ2s

−∞+iσ2s

e−z
2/2σ2

dz , z = x+ iσ2s

=
1√
2π

e−σ
2s2/2 ,

using the Residue theorem to evaluate the integral of the Gaussian by equat-
ing it to one along the real axis (there are no poles for the Gaussian). Observe
that this Fourier transform has a width ∆s ∼ 1/σ so that we deduce the
correlation ∆x∆s ∼ 1 relating the widths of the Gaussian and its transform.
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Figure 6: A Gaussian f(x) of standard devision σ = 2 (blue) and its Fourier
transform g(s) of width 1/σ (orange).

• This focuses upon an essential mathematical property of Fourier trans-
forms: the product of the variances (i.e. σ2 ) of a function f(x) and its
Fourier transform is of the order of unity.

∗ Broad functions f(x) have narrow Fourier transforms and vice versa.
The property essentially follows from constructive or destructive contribu-
tions to the integrals involving complex exponentials.

• This property underpins various important physics elements that connect A&W
pp. 940-1to superpositions of infinite or finite plane waves and therefore are intimately

related to Fourier transforms:

∗ Heisenberg’s uncertainty principle relating conjugate variables in
quantum mechanics (e.g. ∆x∆p & ~ for de Broglie wavelengths λ = ~/p );

∗ classical radiation power spectra in Larmor formalism for accelerating
charges in electrodynamics (e.g. ∆x∆ω & c ). Examples include Thomson
scattering, bremsstrahlung and synchrotron radiation;

∗ a myriad of elements relating to hydromagnetic waves in turbulent plas-
mas, such as magnetic field turbulence spectra and diffusion of charges using
classical electrodynamics in turbulent environs.

∗ acoustic mode contexts such as quasi-periodic oscillations in neutron star
crusts, i.e. outer layers.
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• Example 4: To further illustrate this “uncertainty principle” property of
Fourier transforms, we consider

f(x) =
1
π

a
a2 + x2

, (38)

a Lorentzian with width a and peak amplitude 1/a . Its transform is

g(s) =
a

π
√

2π

∫ ∞
−∞

e−ixs dx
(x+ ia) (x− ia)

, (39)

which is easily evaluated using the Cauchy residue theorem.

∗ For s > 0 , close the contour with the semicircle in the lower half plane
so that it captures the pole at z = −ia , giving g(s > 0) = e−as/

√
2π .

∗ For s < 0 , close the contour instead with the semicircle in the upper
half plane, capturing the pole at z = ia ; this gives g(s < 0) = e+as/

√
2π .

• For s = 0 , the integral evaluates simply as π/a using the arctan function.
Combining results, we have

g(s) =
e−a|s|√

2π
, (40)

which has a width 1/a . Hence the ∆x∆s ∼ 1 character is established.

∗ Logically inverting this problem, introducing a decay lifetime to a plane
wave state via an exponential e−a|s| imposes a Lorentz profile to the spectra
of discrete radiative transitions in physics (natural line broadening).

∗ Observe that the discontinuous derivative at s = 0 is related to the fact
that f(x) does not approach zero sufficiently fast as x→ ±∞ .
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7. INTEGRAL TRANSFORMS AND
DISPERSION RELATIONS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Various Integral Transforms

The concept of the Fourier transform can be extended to treat more general
weightings in the integrands that are useful for different contexts. For a
function f(x) , if

g(s) =

∫ b

a

f(x)K(s, x) dx (1)

exists, it is called the integral transform of f(x) by the kernel K(s, x) .
Common examples are as follows:

Fourier transform g(s) =
1√
2π

∫ ∞
−∞

f(x) e−ixs dx

Laplace transform g(s) =

∫ ∞
0

f(x) e−xs dx

Hankel transform g(s) =

∫ ∞
0

f(x)x Jn(xs) dx (2)

Mellin transform g(s) =

∫ ∞
0

f(x)xs−1 dx

Hilbert transform g(s) =
1
π
P
∫ ∞
−∞

f(x)
x− s dx

Note that all are linear transforms. Note also that P denotes the Cauchy
principal value of the integral that treats cancelling divergences around the
singularity in the integrand; this subtlety will be explored more in Section 2.
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• Now let us explore the Laplace transform, and its relation to the Fourier
transform. In cases where f(x) is not integrable over (−∞, ∞) , we can A&W

Sec. 15.8truncate the integration range by applying a convergence factor H(x) e−cx

where c > 0 is real and H(x) is the Heaviside step function:

H(x) =

{
0 , x < 0 ,
1 , x > 0 .

(3)

Then, provided that f(x) is of exponential order c1 < c , meaning that
f(x) grows no faster than ec1x as x → ∞ , then the Fourier transform of√

2πf(x)H(x)e−cx is called the Laplace transform of f(x) :

g(y) =

∫ ∞
−∞

f(x)H(x) e−cx e−ixy dx =

∫ ∞
0

f(x) e−(c+iy)x dx . (4)

It is conventional to define s = c + iy so that the Laplace transform is
effectively a Fourier transform rotated and translated in the complex plane.
Then

g(s) =

∫ ∞
0

f(x)e−sx dx . (5)

The inverse of this can be determined using the inverse Fourier transform:

f(x)H(x) e−cx =
1

2π

∫ ∞
−∞

g(y) eixy dy =
1

2πi

∫ c+i∞

c−i∞
g(s) e(s−c)x ds (6)

so that the Laplace inversion integral becomes

f(x)H(x) =
1

2πi

∫ c+i∞

c−i∞
g(s) esx ds . (7)

• Note that the constant c in this contour integral must be chosen so that
the contour is to the right of any poles of g(s) . Then, for x < 0 the
contour can be closed with a semicircle to the right half plane, correctly
giving H(x)f(x) = 0 . In contrast, for x > 0 , we complete the contour in
the left half plane, capturing all the poles of g(s) and giving

f(x > 0) =
∑
p

Res
[
g(s)

]
s=sp

. (8)
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• Simple examples of Laplace transforms include

f(x) = xn ⇒ L [f(x)] =
n!
sn+1 , Re(s) > 0 . (9)

for integer n (observe the new Laplace transform notation), and

f(x) = eax ⇒ L [f(x)] =

∫ ∞
0

e(a−s)x dx =
1

s− a , Re(s) > a .

(10)
Another example that is germane to electrical circuit theory (see Section 2)
or other systems with sinusoidal response is

f(x) = sin ax ⇒ L [f(x)] =
a

a2 + s2
, Re(s) > 0 ,

(11)

f(x) = cos ax ⇒ L [f(x)] =
s

a2 + s2
, Re(s) > 0 .

These results are most simply demonstrated by expressing the trigonometric
functions in terms of complex exponentials.

Each of the highlighted transforms has particular situations where it is useful:

• Bessel or Hankel transforms can be applied to cylindrical systems of
partial differential equations since often such geometry sets up Bessel
function character in the dimension orthogonal to the cylinder axis.

• Mellin transforms enhance the facility of treating problems with power-
law (scale-independent) character.

• Hilbert transforms are germane to dispersion theory, and will be ex-
plored further in Section 2 below.

• Example 1: Consider the Mellin transform of a truncated power-law
function P (k) = P0 k

−γ for kmin < k < kmax and P (k) = 0 outside this
range. Such distributions are commonly encountered in turbulence theory
(including sandpiles, seismic activity), and are scale-independent (power-
law) between the stirring scale kmin and the dissipation scale kmax . In such
cases, k = 2π/λ represents the wavenumber of the turbulence, with λ being
its wavelength. The Mellin transform for this distribution is also power-law:

g(s) =

∫ ∞
0

P (k) ks−1 dk =
ks−γmax − k

s−γ
min

s− γ . (12)
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1.1 Generic Properties

Here we summarize a handful of integral transform properties that prove
useful in manipulating differential and even integral equations. To facilitate
compact forms, we use the following notation:

F [f(x)] =
1√
2π

∫ ∞
−∞

f(x) e−ixy dx (13)

as the exponential Fourier transform, and

L [f(x)] =

∫ ∞
0

f(x) e−sx dx (14)

as the Laplace transform of f(x) . These transforms display linearity:

F [a1f1(x) + a2f2(x)] = a1F [f1(x)] + a2F [f2(x)] ,
(15)

L [a1f1(x) + a2f2(x)] = a1 L [f1(x)] + a2L [f2(x)] .

The expressions for derivatives can be established using integration by
parts:

F [f ′(x)] = iyF [f(x)] ,
(16)

L [f ′(x)] = sL [f(x)]− f(0) .

These forms convert differential equations into algebraic ones, an example of
which will be explored in the next Subsection. Integrals can be manipulated
in similar fashion:

F
[∫ x

0

f(x′) dx′
]

=
1
iy
F [f(x)] ,

(17)

L
[∫ x

0

f(x′) dx′
]

=
1
s
L [f(x)] ,

which facilitate conversion of integral equations into algebraic ones. These
results are established by integration by parts, with the residual terms con-
tributing zero in each case.
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Translation formulae are routinely derived:

F [f(x+ a)] = eiay F [f(x)] ,
(18)

L [f(x+ a)] = eas
{
L [f(x)]−H(a)

∫ a

0

e−sx f(x) dx

}
,

where the second terms vanishes for a < 0 because H(a) is a step function
that is unity for positive a , and zero otherwise. Multiplication by powers
of x is tantamount to differentiation of the transforms:

F[x f(x)] = i
d
dy
F[f(x)] ,

(19)

L[x f(x)] = − d
ds
L[f(x)] .

The final class of integral transform properties that will be listed here pertains A&W
Sec. 15.11to convolutions of functions, which are defined via

f1 ∗ f2 ≡
∫ ∞
−∞

f1(y) f2(x− y) dy , (20)

and represent weighted averages of either contributing function. Then, the
following convolution theorems apply:

F[f1 ∗ f2] =
√

2πF[f1(x)]×F[f2(x)] ,
(21)

L[f1 ∗ f2] = L[f1(x)]× L[f2(x)] .

These can be deployed to expedite evaluation of individual transforms if
the transform of the convolution is simply determined. Coupled with these,
there are the converse convolution theorems. If, for i = 1, 2 , Fi(y) =
F [fi(x)] and Li(y) = L [fi(x)] define the transforms, then

F[f1 × f2] =
1√
2π

∫ ∞
−∞
F1(z)F2(y − z) dz ,

(22)

L[f1 × f2] =
1

2πi

∫ c+i∞

c−i∞
L1(z)L2(s− z) dz .

In other words, the Fourier (Laplace) transform of a product is proportional
to the convolution of the Fourier (Laplace) transforms, and vice versa.
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Fourier Convolution Theorems

Here are the proofs for the Fourier convolution theorems:

F[f1 ⇤ f2] =
1

p

2⇡

Z 1

�1
e
�isx

dx

Z 1

�1
f1(y) f2(x� y) dy

=
1

p

2⇡

Z 1

�1
f1(y) e

�isy
dy

Z 1

�1
f2(x� y) e�is(x�y)

dx

=
p

2⇡F[f1(x)]⇥ F[f2(x)] ,

and
Z 1

�1
F1(z)F2(y � z) dz =

1
2⇡

Z 1

�1
dz

Z 1

�1
f1(t) e

�izt
dt

Z 1

�1
f2(x) e

�i(y�z)x
dx

=

Z 1

�1
f1(t) dt

Z 1

�1
f2(x) e

�ixy
dx

1
2⇡

Z 1

�1
e
i(x�t)z

dz

=

Z 1

�1
f1(t) dt

Z 1

�1
f2(x) e

�ixy
�(x� t) dx

=

Z 1

�1
f1(t) f2(t) e

�ity
⌘

p

2⇡F[f1 ⇥ f2] .

6




