
• Example 1: The square wave or step function is formally discontinuous,
but has a well-defined Fourier series. Consider the form A&W

pp. 892–3

f(θ) =


+1 , 0 < θ < π ,

0 , θ = π,

−1 , π < θ < 2π .

(9)

Then

an =
1
π

∫ π

0

cosnθ dθ − 1
π

∫ 2π

π

cosnθ dθ =
sinnθ
nπ

∣∣∣∣π
0

−sinnθ
nπ

∣∣∣∣2π
π

= 0 .

(10)
Likewise

bn =
1
π

∫ π

0

sinnθ dθ − 1
π

∫ 2π

π

sinnθ dθ = −cosnθ
nπ

∣∣∣∣π
0

+
cosnθ
nπ

∣∣∣∣2π
π

, (11)

so that

bn =
2
nπ

[
1− (−1)n

]
=


4
nπ

, n = 1, 3, 5, 7 . . .

0 , n = 0, 2, 4, 6, . . .
(12)

It then follows that the Fourier series for the square wave f(θ) is

f(θ) =
4
π

∞∑
k=0

sin(2k + 1)θ
2k + 1

, 0 < θ < 2π . (13)

• This particular example exhibits a pathological feature known as Gibb’s A&W
Sec. 14.5phenomenon: the Fourier series does not converge uniformly in the neigh-

borhood of a discontinuity.

∗ The amplitude of the “overshoot” remains finite even as the number of
terms N computed tends to infinity, although the width of the overshoot
tends to zero (as 1/N ) as N →∞ .
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• Example 2 (Numerical): The square wave provides an ideal case to
exhibit Gibb’s phenomenon. This is simply done using Mathematica coding.
Eq. (13) can be truncated to a series of N terms via

S[x , N ] := (4/Pi) Sum[ Sin[(2k+1) x]/(2k+1), {k, 0, N}]
Results for different N on 0 < θ, π , in increasing order, are now illus-
trated, to clearly highlight Gibb’s phenomenon; the [π, 2π] interval is a
simple upside-down inversion of these.

0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

1.2
fapproxHxL

S[x,3]

N=3

0.5 1.0 1.5 2.0 2.5 3.0
x

0.2

0.4

0.6

0.8

1.0

1.2
fapproxHxL

N=10

Figure 1: The truncated sums S[x, 3] (left) and S[x, 10] (right) used to de-
scribe Eq. (13), plotted in Mathematica using the command Plot[S[x, N],

{x, 0, Pi}, AxesLabel -> {x, fapprox[x]}, PlotRange -> Full].
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Figure 2: The truncated sums S[x, 30] (left) and S[x, 100] (right) that
clearly depict the non-uniform convergence of Gibb’s phenomenon for the
square wave in the vicinity of its discontinuities.

• The error incurred by approximating the discontinuity with a sum of con-
tinuous functions is maximized at around the 17% level.
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• Example 3: Consider the Fourier series for the parabola f(x) = x2 on A&W
Ex. 14.3.3the interval |x| ≤ π . The function is even, and the Fourier coefficients are

routinely determined:

a0 =
1
π

∫ π

−π
x2 dx =

2π2

3
,

(14)

an =
1
π

∫ π

−π
x2 cosnx dx = (−1)n

4
n2 .

From this we derived the Fourier series

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n
cosnx
n2 . (15)

Setting x = π sets cosnπ = (−1)n so that we can obtain the value of the
Riemann zeta function:

ζ(2) ≡
∞∑
n=1

1
n2 =

π2

6
. (16)

For x = 0 , we also get

η(2) ≡
∞∑
n=1

(−1)n+1

n2 =
π2

12
. (17)

• For a periodic function f(x) with period L 6= 2π , we replace θ in the
foregoing analysis by 2πx/L . Then

f(θ) =
A0

2
+
∞∑
n=1

(
An cos

2nπx
L

+Bn sin
2nπx
L

)
. (18)

with

An =
2
L

∫ L

0

f(x) cos
2nπx
L

dx

(19)

Bn =
2
L

∫ L

0

f(x) sin
2nπx
L

dx .

This connects to more real-life systems such as modeling crystal lattices.
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1.1 Complex Form for Fourier Series

It is often much more convenient and necessary to carry along the information
of both sinusoidal components in Fourier series. This is expedited using
complex exponential forms. Using Euler’s formula e±inθ = cosnθ ± i sinnθ ,
our Fourier series in Eq. (1) can be rewritten

f(θ) =
a0
2

+
∞∑
n=1

(
an
einθ + e−inθ

2
+ bn

einθ − e−inθ
2i

)
. (20)

Collecting terms, and relabelling those with negative exponents gives the
complex exponential form

f(θ) =
∞∑

n=−∞

cn e
inθ , cn =

1
2

{
an − ibn , n > 0 ,
a0 , n = 0 ,
an + ibn , n < 0 .

(21)

The orthogonality property of complex exponentials is∫ 2π

0

einθe−imθ dθ = 2πδnm , (22)

and can be derived by direct integration, or from Eqs. (3) and (4). By anal-
ogy with the trigonometric function analysis, we form complex exponential
integral moments to efficiently deduce compact forms for the Fourier coeffi-
cients:

cn =
1

2π

∫ 2π

0

f(θ) e−inθ dθ . (23)

This result could be also determined by substitution of complex exponentials
into the trigonometric forms for an and bn , but that path is less efficient.

• Observe the “orthonormality” property of

1
2π

∫ 2π

0

|f(θ)|2 dθ =
1

2π

∫ 2π

0

dθ

(
∞∑

n=−∞

cne
inθ

)(
∞∑

m=−∞

c∗me
−imθ

)
(24)

=
∑
n,m

cnc
∗
m δnm =

∞∑
n=−∞

|cn|2 .

This is a discrete (i.e. series) analog of Parseval’s theorem, and provides
useful information for power spectra of turbulent systems.
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2 The Fourier Transform

The Fourier transform is the continuum limit of the complex Fourier series A&W
Sec. 15.2as the (spatial) period L → ∞ . This corresponds to small changes in the

series terms between neighboring values of n . Consider

f(x) =
∞∑

n=−∞

cn e
i 2πnx/L , cn =

1
L

∫ L/2

−L/2
f(x) e−i 2πnx/L dx . (25)

To map over to the continuum limit, we define s = 2πn/L and the Fourier
transform Lcn =

√
2πg(s) , using the correspondence

∞∑
n=−∞

F(n) →
∫ ∞
−∞
F(n) dn → L

2π

∫ ∞
−∞
F(s) ds (26)

for the Fourier series, with F(n) representing each term of the series. Then

f(x) =
1√
2π

∫ ∞
−∞

g(s) eixs ds (27)

defines the inverse Fourier transform of the function g(s) , and

g(s) =
1√
2π

∫ ∞
−∞

f(x) e−ixs dx (28)

defines the Fourier transform of the function f(x) . These follow simply
from inserting the correspondence Eq. (26) into Eq. (25).

∗ Observe that normalization conventions with the integrals defining Fourier
transform/inverse pairs are not unique. For example, often, the factor outside
one of the integrals in the pair is 1/2π , while the other is unity.

∗ Observe that a sufficient (but not necessary) condition for convergence
of the Fourier transform is that f(x) is absolutely integrable, i.e.∫ ∞

−∞

∣∣∣f(x)
∣∣∣ dx exists. (29)
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• Combining Eqs. (27) and (28) yields

f(x) =
1

2π

∫ ∞
−∞

ds eixs
∫ ∞
−∞

dx′ f(x′) e−ix
′s

(30)

=

∫ ∞
−∞

dx′ f(x′)
1

2π

∫ ∞
−∞

ds ei(x−x
′)s

after re-ordering the integrals. Then we introduce the Dirac delta function A&W
pp. 937–8δ(x) via the definition

δ(x) = 0 , x 6= 0 for

∫ b

a

δ(x) dx = 1 , a < 0 < b . (31)

It follows that Eq. (30) establishes the integral identity for the Dirac delta
function:

δ(χ) =
1

2π

∫ ∞
−∞

ds eiχs , (32)

i.e., the destructive interference of the integrand reduces the integral to zero
when χ 6= 0 , and it is simply divergent for χ = 0 .

• Note that δ(x) is a distribution, or a generalized function. It can be
expressed as the limit form of a sequence δn(x) of normal functions.

δn(x) =
n
π

1
1 + n2x2

or δn(x) =
n√
π
e−n

2x2 (33)

or δn(x) =
1
nπ

sin2 nx
x2

provide some alternatives, all of which approach δ(x) as n→∞ . They have
a peak magnitude ∝ n and peak width ∝ 1/n , and all have unit area on the
interval (−∞, ∞) . This behavior can be exhibited using the Mathematica

coding for the functions:

delta1[n , x ] := n/Pi/(1+ n^2 x^2 )

delta2[n , x ] := n/Sqrt[Pi] * Exp[ -n^2 x^2]

delta3[n , x ] := (Sin[ n x])^2/(n Pi x^2)
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Figure 3: The sequence of functions δn(x) = n/π/(1 +n2x2) , for n = 1, 2, 5
used to approximate the Dirac δ function when high values of n are adopted.

Mathematica plots of these are acquired using the commands

Plot[ {delta1[1,x], delta1[2,x], delta1[5,x]}, {x, -3, 3},
AxesLabel -> {x, delta1}, PlotRange -> Full]

Plot[ {delta2[1,x], delta2[2,x], delta2[5,x]}, {x, -3, 3},
AxesLabel -> {x, delta2}, PlotRange -> Full]

Plot[ {delta3[1,x], delta3[2,x], delta3[5,x]}, {x, -3, 3},
AxesLabel -> {x, delta3}, PlotRange -> Full]
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Figure 4: The sequence of functions δn(x) = n/
√
π e−n

2x2 , for n = 1, 2, 5
used to approximate the Dirac δ function when high values of n are chosen.
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Figure 5: The sequence of functions δn(x) = sin2 nx/(nπ x2) , for n = 1, 2, 5
used to approximate the Dirac δ function when high values of n are adopted.

∗ These illustrations clearly indicate that once n is considerably greater
than unity, the detailed form of the approximating functional sequence is
actually immaterial, just the generic peaking, narrowing and area normaliza-
tion character.

2.1 Parseval’s Relation and Uncertainty Principle

A mathematical property of Fourier transforms that has extremely important A&W
pp. 952–3implications for various areas of physics is Parseval’s Relation that relates

the inner products of a function and its Fourier transform:∫ ∞
−∞

∣∣∣f(x)
∣∣∣2 dx =

∫ ∞
−∞

∣∣∣g(s)
∣∣∣2 ds . (34)

Note that this relationship may be modified by factors like 1/2π if the nor-
malization convention in Eqs. (27) and (28) is altered.

∗ Observe that convergence requirements for these integrals are actually
more restrictive than those for the existence of the Fourier transform.

∗ This result can actually be extended to the convolution of two different
functions.
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To prove Parseval’s Theorem, we make use of the integral identity for the
Dirac delta function.∫ ∞
−∞

∣∣∣f(x)
∣∣∣2 dx =

∫ ∞
−∞

f(x) f ∗(x) dx

=

∫ ∞
−∞

dx

{
1√
2π

∫ ∞
−∞

g(s) eixs ds

}
×
{

1√
2π

∫ ∞
−∞

g∗(s′) e−ixs
′
ds′
}

(35)

=

∫ ∞
−∞

ds g(s)

∫ ∞
−∞

ds′ g∗(s′)
1

2π

∫ ∞
−∞

eix(s−s
′) dx

=

∫ ∞
−∞

ds g(s)

∫ ∞
−∞

ds′ g∗(s′) δ(s− s′) =

∫ ∞
−∞

∣∣∣g(s)
∣∣∣2 ds .

• Example 4: The Fourier transform of a Gaussian is another Gaussian.
To demonstrate this, we start with A&W

p. 932
f(x) =

1

σ
√

2π
e−x

2/2σ2

, (36)

of unit normalization, and a width (standard deviation) ∆x ∼ σ . Then

g(s) =
1√
2π

∫ ∞
−∞

f(x) e−ixs dx

=
1

2πσ

∫ ∞
−∞

e−x
2/2σ2−ixs dx

=
1

2πσ

∫ ∞
−∞

exp

{
− 1

2σ2

[
(x+ σ2is)2 + σ4s2

]}
dx (37)

=
1

2πσ
e−σ

2s2/2

∫ ∞+iσ2s

−∞+iσ2s

e−z
2/2σ2

dz , z = x+ iσ2s

=
1√
2π

e−σ
2s2/2 ,

using the Residue theorem to evaluate the integral of the Gaussian by equat-
ing it to one along the real axis (there are no poles for the Gaussian). Observe
that this Fourier transform has a width ∆s ∼ 1/σ so that we deduce the
correlation ∆x∆s ∼ 1 relating the widths of the Gaussian and its transform.
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