
4 Numerical Integration

The foregoing formal content is now supplemented by an exploration of nu-
merical aspects. The focus will be two-fold: first Newton-Cotes type ap-
proaches that are more elemental in character, and then more sophisticated
techniques, specifically Gaussian quadrature, followed by a brief mention of
Romberg’s method.

4.1 Newton-Cotes Formulae

These derived from the elemental approach of Newton’s theory of integra-
tion. The agenda is to compute areas under curves with increasing accuracy
and complexity of algorithm. The first method is to approximate functional
behavior on a sequence of intervals [xi, xi+1] by a piecewise linear construct,
thereby formulating the trapezoidal rule.

Plot: Trapezoidal Rule Construct

Then,

f(x) ≈ fi +
(
fi+1 − fi

)
x− xi
xi+1 − xi

. (48)

This then gives an integral approximation on this interval of∫ xi+1

xi

f(x) dx ≈ hi
2

(
fi+1 + fi

)
, hi = xi+1 − xi , (49)

with an error of the order of h3i . Often, the implementation is for a sequence
of evenly-spaced intervals. With hi = h for all i , the total integration over
two consecutive intervals becomes∫ xi+2

xi

f(x) dx ≈ h
2

(
fi + 2fi+1 + fi+2

)
.

(50)

The accuracy of this trapezoidal rule can clearly be improved by choosing
smaller intervals, unless their is a pathological problem with the integrand,
for example a singularity or sharp peak within the overall integration range.

12



Simpson’s Rule for Numerical Integration



However, integration accuracy is more efficiently improved by approximating
the function more precisely, namely with a piecewise parabolic function. This
now requires 3 points instead of two, to uniquely constrain the parabola.
Without loss of generality, it is sufficient, and prudent, to space the two
sub-intervals equally.

Plot: Simpson’s Rule Construct

This method is known as Simpson’s rule, and we derive the approximating
function as follows. The parabolic form can be written

f(x) ≈ fi + a (x− xi) + b (x− xi)2 , (51)

from which the specific evaluations at x = xi+1 and x = xi+2 yield the
following simultaneous equations for a and b :

fi+1 = fi + a h+ b h2 ,
(52)

fi+2 = fi + a (2h) + b (2h)2 ,

where we have used the substitutions h = xi+1 − xi and 2h = xi+2 − xi .
These can be solved to yield

2ah = −3fi + 4fi+1 − fi+2 ,
(53)

2bh2 = fi − 2fi+1 + fi+2 .

From this, the final result for the integral on [xi, xi+2] of Eq. (51) is∫ xi+2

xi

f(x) dx ≈ h
3

(
fi + 4fi+1 + fi+2

)
.

(54)

This is Simpson’s rule, and is accurate to O(h5) , and therefore more precise
than the trapezoidal rule, which possesses comparable computational needs.
Accordingly, it is of common usage, as is the alternative Simpson’s 3/8 rule:∫ xi+3

xi

f(x) dx ≈ 3h
8

(
fi + 3fi+1 + 3fi+2 + fi+3

)
, (55)

which uses a cubic fit, but is no more accurate, i.e. of O(h5) .
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Simpson’s Rule: Mathematica Example



4.2 Gaussian Quadrature

The essence of the Gaussian quadrature technique is to approximate the
integral by a weighted sum over values of the function at selected abscissa
points. The finite number of abscissa points are chosen based on the inte-
gration limits, and the nature of the integrand. They form zeros for a select
class of polynomials (or functions) for which the integral evaluation is exact
on the particular integral. As no formal derivation is offered here (see Stroud
& Secrest 1966, “Gaussian Quadrature Formulas”), the method is expounded
by illustration.

• This example will define two-point Gauss-Legendre quadrature for
integrals of the form∫ 1

−1
f(x) dx ≈ w1 f(x1) + w2f(x2) . (56)

The key elements are the integration range, [−1, 1] , upon which the Legen-
dre polynomials form an orthogonal set of basis states, and the weighting
factor of unity in the integrand. The approach embellished here is viable
provided that f(x) is not extraordinarily rapidly varying on [−1, 1] , i.e. is
not exponential in character, nor possesses singularities or cusp points.

• Eq. (56) has four unknowns, so we require the quadrature to be exact for
functions f(x) = 1, x, x2, x3 , and, consequently, for all cubic polynomials.
This establishes the system of simultaneous equations:

f(x) = 1 : w1 + w2 = 2 ,

f(x) = x : w1x1 + w2x2 = 0 ,
(57)

f(x) = x2 : w1x
2
1 + w2x

2
2 =

2
3

,

f(x) = x3 : w1x
3
1 + w2x

3
2 = 0 ,

for which the solution is elementary:

x1 = − 1√
3

= −x2 , w1 = w2 = 1 , (58)
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so that x1,2 are the roots of the Legendre polynomial P2(x) = (3x2 − 1)/2 ,
and the two-point Gauss-Legendre rule is∫ 1

−1
f(x) dx ≈ f

(
− 1√

3

)
+ f
(

1√
3

)
. (59)

• If one extends this to three-point quadrature on [−1, 1] , then by a similar
construct, one finds that∫ 1

−1
f(x) dx ≈ 5

9
f

(
−
√

3
5

)
+

8
9
f(0) +

5
9
f

(√
3
5

)
, (60)

which is exact for polynomials up to and including 5th order. Here the roots
of the Legendre polynomial P3(x) = x(5x2 − 3)/2 are sampled.

• The principal of Gaussian quadrature is based on identifying orthogonal
functions, usually nth order polynomials Pn(x) , on the chosen integration
interval [a, b] . These satisfy∫ b

a

w(x)Pn(x)Pm(x) dx = 0 , m 6= n ; m, n = 0, 1, 2, . . . (61)

The polynomials Pn(x) form an orthogonal sequence on the interval [a, b]
with respect to the weight function w(x) , which is usually non-negative.
Then, one can trivially identify the normalization

κ2n ≡
∫ b

a

w(x) [Pn(x)]2 dx > 0 . (62)

Observe that the orthogonality constraint generally forces the sequence to
polynomials that exhibit real roots only.

∗ In the case of Legendre polynomials, w(x) = 1 and also κ2n = 2/(1+2n) .

• For an n -point quadrature, the integration is represented by a finite sum:

∫ b

a

w(x) f(x) dx ≈
n∑
i=1

wi f(xi) .

(63)
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Without loss of generality, the abscissa points can be chosen to be the roots
xi of Pn(x) . It then automatically follows from Eq. (61), by choosing m = 0
so that Pm(x) is a constant, that the quadrature in Eq. (63) is exact (and
zero) for f(x) = Pn(x) .

• It is straightforward to prove that the quadrature is also exact in poly-
nomials of lower order m < n . This assertion is based on the basis vector
decomposition

f(x) = Pm(x) =
m∑
j=0

αj Pj(x) (form < n)

(64)

⇒
∫ b

a

w(x) f(x) dx =
m∑
j=0

αj

∫ b

a

w(x)Pj(x) dx .

and proceed from there.

∗ Note that general ranges of integration a ≤ t ≤ b can be transformed
onto −1 ≤ x ≤ 1 using the substitution x = (2t− b− a)/(b− a) .

• The weights for the quadrature can be shown to be given by a variety of
formulae:

wi =
κ2n−1

P ′n(xi)Pn−1(xi)
= − κ2n

P ′n(xi)Pn+1(xi)
=

∫ b

a

w(x)Pn(x) dx
(x− xi)P ′n(xi)

. (65)

• The categories of Gaussian quadrature depend on the integration limits
and the weighting function; other common types are Gauss-Jacobi, Gauss-
Hermite and Gauss-Laguerre quadrature.

Plot: Types of Gaussian Quadrature

• The primary algorithmic task is to identify the type of quadrature that will
best suit the integral, reworking the integral via changes of variable and then
extracting the appropriate weight function before performing the quadrature.
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Types of Gaussian Quadrature



6. FOURIER SERIES AND
TRANSFORMS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Fourier Series

In physics and engineering applications, periodic functions frequently appear, A&W
Sec. 14.1and efficient means of computing them with good approximation are needed.

This becomes the domain of Fourier series. A function that is defined, and
well-behaved on the interval [0, 2π] (or periodic with period 2π ) can be
represented by the infinite series

f(θ) =
a0
2

+
∞∑
n=1

(an cosnθ + bn sinnθ) . (1)

There is no unique definition of well-behaved functions, but a sufficient (but
not necessary) condition is that f(θ) be piecewise very smooth, meaning that
f, f ′ and f ′′ are piecewise continuous. Then the series converges to f(θ) ,
or to the limit

lim
ε→0

1
2

[
f(θ0 + ε) + f(θ0 − ε)

]
, (2)

if f(θ) is discontinuous at θ = θ0 .

∗ For even functions, f(−θ) = f(θ) and bn = 0 for all n . For odd
functions, f(−θ) = −f(θ) and an = 0 for all n .

• To uniquely determine the Fourier coefficients an and bn , we employ the
orthogonality relations for trigonometric functions:∫ 2π

0

sinnθ cosmθ dθ = 0 (3)
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for all m and n , and∫ 2π

0

cosnθ cosmθ dθ = π δnm =

∫ 2π

0

sinnθ sinmθ dθ (4)

for n 6= 0 6= m . Here δnm is the Kronecker delta and is non-zero only
for integers n = m . The orthogonality relations then permit evaluation of
integral moments of f(θ) with appropriate trigonometric weights:∫ 2π

0

f(θ) dθ =

∫ 2π

0

[
a0
2

+
∞∑
n=1

(an cosnθ + bn sinnθ)

]
dθ = πa0 (5)

for the m = 1 cosine integral moment. Hence,

a0 =
1
π

∫ 2π

0

f(θ) dθ = 2〈f(θ)〉 . (6)

Similarly,∫ 2π

0

f(θ) cosmθ dθ =
1
2

∫ 2π

0

a0 cosmθ dθ

+
∞∑
n=1

{
an

∫ 2π

0

cosnθ cosmθ dθ + bn

∫ 2π

0

sinnθ cosmθ dθ
}

(7)

= 0 +
∞∑
n=1

πanδnm + 0 = π am .

The sine integral moment isolates the bm coefficient in similar fashion. The
results are

an =
1
π

∫ 2π

0

f(θ) cosnθ dθ

(8)

bn =
1
π

∫ 2π

0

f(θ) sinnθ dθ .

These forms uniquely determine the Fourier series in Eq. (1), whose conver-
gence to f(θ) is dictated by the number of terms evaluated in the series.

∗ Often, an and bn are declining functions of n , since the oscillatory
character of the integrands in Eq. (8) is a destructive influence in controlling
contributions to the integrals.
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