
The constant of integration is determined by letting α → ∞ , for which
I(α) → 0 due to the precipitous reduction of the exponential factor in the
integrand. Hence, C = π/2 , and the final evaluation is

I(α) =
π
2
− arctanα ⇒ J ≡ I(0) =

π
2

. (15)

1.2 Series Expansions

Exploiting the potential for series expansions of the integrand can also expe-
dite evaluation, at least numerically. Again, we proceed via example.

• Example 4: Consider the integral

I =

∫ ∞
0

(loge x)2

1 + x2
dx =

∫ ∞
−∞

t2 et

1 + e2t
dt =

∫ ∞
0

t2 dt
cosh t

, (16)

where the change of variables x = et ⇒ dx = et dt has been employed.
Multiplying the integrand of the middle integral top and bottom by e−2t

suggests a geometric series expansion in e−2t to rewrite the denominator:

I =

∫ ∞
−∞

t2 e−t

1 + e−2t
dt = 2

∞∑
n=0

(−1)n
∫ ∞
0

t2 e−t e−2nt dt , (17)

The integrals are now simply evaluated to yield an alternating series, for
which consecutive terms can be grouped together to accelerate convergence,

I = 4
∞∑
n=0

(−1)n

(1 + 2n)3
= 8

∞∑
k=0

48k2 + 48k + 13
(1 + 4k)3 (3 + 4k)3

. (18)

This can quickly be summed to yield I ≈ 3.8758 .
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2 Contour Integration

The principal attribute of the Residue Theorem is that it facilitates integral A & W,
Sec. 7.1evaluation. The trick is to find a contour C that contains the desired integral

as one of its segments, while all other segments are easily calculated.

• Example 5: Consider the trivial example

I =

∫ ∞
0

dx
1 + x2

=
π
2

, (19)

which is analytically tractable. With f(z) = 1/(1 + z2) = 1/(z − i)/(z + i) ,
which has simple poles at z = ±i . The preferred choice of contour is a
semicircle of radius R that captures the entire upper half of the complex
plane when R→∞ . Only the pole at z = +i is enclosed by the contour.

y

x
R-R

zp

Figure 1: The semi-circular contour that is optimal for the 1/(1 + z2) inte-
gration. Only the simple pole at zp = +i is encircled by the contour and
thus contributes a residue to the integral evaluation.

With the straight portion of the contour coinciding with the real axis, this
portion generates twice the integral in Eq. (19). The integral along the semi-
circular portion is ∫ π

0

iR eiθ dθ
1 +R2 e2iθ

→ 0 as R → ∞ . (20)

Accordingly,

2I = 2πiRes(z = +i) = 2πi

(
1
2i

)
= π ⇒ I =

π
2

. (21)
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• Example 6: Now, to a more complicated case, let us reconsider the
integral in Example 4, for which the last form in Eq. (16) is amenable to
contour integration. For f(z) = z2/ cosh z , which has a simple pole at
z = iπ/2 , the appropriate choice of contour is a rectangular one with vertices
at x = ±R and y = 0, iπ .

y

x

R-R

zp=iπ/2

iπ

Figure 2: The rectangular contour that is optimal for the z2/ cosh z integra-
tion. Only the simple pole at zp = +iπ/2 is encircled by the contour and
thus contributes a residue to the integral evaluation.

The function f(z) has a simple pole at z = iπ/2 , so to determine the residue
there, we set z = iπ/2 + δ . Then, as δ → 0 ,

cosh z =
1
2

(
eiπ/2+δ + e−iπ/2−δ

)
=

i
2

(
eδ − e−δ

)
→ iδ . (22)

From this, one discerns that the residue of f(z) is

Res

(
iπ
2

)
=

1
i

(
iπ
2

)2

= i
π2

4
. (23)

As R → ∞ , the contributions along the contour intervals [R, R + iπ] and
[−R + iπ, −R] approach zero. Therefore, the Residue Theorem results in∮

C

z2 dz
cosh z

=

∫ ∞
−∞

u2 du
coshu

−
∫ ∞
−∞

(u+ iπ)2 du
cosh(u+ iπ)

= 2πiRes

(
iπ
2

)
. (24)

The term that is odd in u contributes zero identically, so that

2

∫ ∞
−∞

u2 du
coshu

− π2

∫ ∞
−∞

du
coshu

= − π
3

2
. (25)
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The substitution x = eu then facilitates the evaluation of the remaining
integral: ∫ ∞

−∞

du
coshu

= 2

∫ ∞
0

dx
x2 + 1

= 2
[
arctanx

]∞
0

= π . (27)

The first integral on the LHS of Eq. (26) is therefore π3/4 , twice that sought.
The final analytic result is

I =

∫ ∞
0

(loge x)2

1 + x2
dx ≡

∫ ∞
0

t2 dt
cosh t

=
π3

8
, (28)

and together with Eq. (19), this yields a series evaluation for π3 .

• This examples serves to illustrate how integral manipulation, series con-
tructs, and contour integration can be used to facilitate a variety of identities
and techniques for evaluation.

• Example 7: As a final example of the contour integration technique, here
the integral in Example 3 is reconsidered. For this, one uses a contour that
is semi-circular in the upper half z plane, for the function f(z) = eiz/z :

y

x
R-R ε-ε

Cε

CR

Figure 3: The indented semi-circular contour that is optimal for the eiz/z
integration. Only the simple pole at zp = 0 is abutted by the contour and
thus contributes the negative of half a residue to the integral evaluation.

Since f(z) has a simple pole at z = 0 , we can either include or exclude it,
a choice that is immaterial. For simplicity, we exclude it here, using a small,
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semi-circular portion of the contour or radius ε . The Residue Theorem then
gives∮

C

eiz

z
dz =

∫ −ε
−R

eix

x
dx+

∫
Cε

eiz

z
dz+

∫ R

ε

eix

x
dx+

∫
CR

eiz

z
dz = 0 . (28)

The integral over the semi-circular portion of radius R contributes zero as
R → ∞ . This can be established by substituting z → Reiθ and observing
that the exponential crushes the integrand except for a range of θ near zero
of width ∼ 1/R . To discern this in greater detail, develop this integral via A & W,

p. 467∫
CR

eiz

z
dz =

∫ π

0

eiR[cos θ+i sin θ] i���Reiθ dθ

���Reiθ
= i

∫ π

0

dθ e−R sin θ︸ ︷︷ ︸
Factor 1

eiR cos θ︸ ︷︷ ︸
Factor 2

. (29)

The first highlighted factor in the integrand is exponentially suppressed un-
less |θ| . 1/R or |π − θ| . 1/R , two extremely narrow windows. In these
domains, | cos θ| ≈ 1 , implying that the second highlighted factor oscillates
rapidly, and therefore causes destructive interference, so that the integral
tends to zero. This result, in a form generalized to a host of weighting func-
tions in the integrand, is known as Jordan’s lemma.

Then, the overall contour integral reduces to two contributions:∮
eiz

z
dz =

∫
Cε

eiz

z
dz + P

∫ ∞
−∞

eix

x
dx = 0 . (30)

Here the symbol P denotes the principal part, which constitutes the lim-
iting contribution around x = 0 :

P
∫ ∞
−∞

eix

x
dx ≡ lim

ε→0+

{∫ ∞
ε

eix

x
dx+

∫ −ε
−∞

eix

x
dx

}
. (31)

Only the imaginary part contributes to this, since the real part is odd in x .

The integral over Cε can be evaluated using z = εeiθ , but now with the
more limited range of angles 0 ≤ θ ≤ π . Hence, it contributes −1/2 of
2πi times the residue of the z = 0 simple pole, i.e. −i π (the minus sign
originates in the clockwise sense of Cε ). From this, we deduce

J =

∫ ∞
0

sinx
x

dx =
π
2

. (32)

Other contours can be deployed to effect the contour integration of this in-
tegral: see Problem 7.1.15 of Arfken & Weber.
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3 Asymptotic Expansions

A second series technique that is generally applicable for large arguments is
the generation of asymptotic series. These are useful, though not neces-
sarily convergent series: convergence becomes irrelevant if an accurate ap-
proximation is achieved by truncating the series at a small number of terms.

Consider the error function of probability theory

erf(x) ≡ 2√
π

∫ x

0

e−t
2

dt =
2√
π

[
x− x3

3
+

x5

5.2!
− x7

7.3!
+ . . .

]
. (33)

The Taylor series is clearly convergent for all x , but is generally only com-
putationally useful for x . 1 . For large arguments x , it is convenient to
consider the complementary error function

erfc(x) ≡ 1− erf(x) =
2√
π

∫ ∞
x

e−t
2

dt . (34)

The integral is intractable, but it can be manipulated by sequential integra-
tion by parts to generate an asymptotic series:

erfc(x) =
2√
π

{[
− 1

2t
e−t

2
]∞
x
− 1

2

∫ ∞
x

e−t
2 dt
t2

}
(35)

=
2√
π

{
e−x

2

2x
− e−x

2

4x3
+

3
4

∫ ∞
x

e−t
2 dt
t4

}
with the result (see Exercise 5.10.4 in Arfken & Weber)

erf(x) = 1− e−x
2

x
√
π

[
1− 1

2x2
+

3
8x4
− 15

8x6
+ . . .

]
. (36)

This is useful for computation purposes when x is large, but is formally
divergent when x . 1 . This is due to the factorial nature of the coefficient
of 1/x2n , a property that is easily discerned from the integrals in Eq. (35).
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3.1 Laplace’s Method of Steepest Descents

This method approximates the value of an integral that has a strong peaking A & W,
Sec. 7.3of the integrand forced by the presence of an exponential.

• Example 8: Consider the Gamma function

Γ(z) ≡
∫ ∞
0

tz−1 e−t dt . (37)

Integrating by parts quickly gives the relation Γ(z) = (z− 1) Γ(z− 1) , from
which we deduce that Γ(n) = (n − 1)! Accordingly, Γ(z) is also known as
the factorial function. We seek an asymptotic expansion for this when
z = x+ 1� 1 . The integrand can be written

tx e−t = e−f(t, x) , f(t, x) ≡ t− x loge t . (38)

Now expand the exponent in a Taylor series about its maximum, t = x ,
which is the solution of ∂f/∂t = 0 . This algorithm gives a much better
approximation than expanding the whole integrand itself because f(t, x)
varies much more slowly than exp{f(t, x)} . Then

f(t, x) ≈ f(x, x)+
1
2
f ′′(x, x) (t−x)2 + . . . ≈ x−x loge x+

(t− x)2

2x
(39)

Truncating at the quadratic term, this can be substituted in the exponential
to yield

Γ(1 + x) ≈ xxe−x
∫ ∞
0

exp

[
−(t− x)2

2x

]
dt . (40)

Then, using the change of variables u = (t−x)/
√

2x , the integration reduces
to a complementary error function:

Γ(1 + x) ≈ xxe−x
√

2x

∫ ∞
−
√
x/2

e−u
2

du . (41)

With minimal incursion of error, the lower limit can be replaced by −∞ , so
that

Γ(1 + x) ≡ x! ≈
√

2π xx+1/2 e−x . (42)

This is the first term in Stirling’s approximation to the Γ function.
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• The technique just illustrated is called the method of steepest descents,
and is akin to the WKB approximation. Its extension to the complex plane
is entitled the saddle-point method, based on the fact that an analytic
function f(z) has no absolute maxima or minima, only saddle points, due
to the harmonic nature of its (u, v) components.

• The general formalism can quickly be deduced using the same Taylor series
expansion technique, where f(t, x) is a slowly varying function of t that
achieves a minimum at t = t0 . It quickly follows that

I =

∫ ∞
0

exp {−f(t, x)} dt ≈
√

2π
|f ′′(t0, x)| exp

{
−f(t0, x)

}
(43)

again by changing variables and extending the Gaussian integral lower limit
to negative infinity.

• Example 9: The modified Bessel function of the second kind, Kν(x) ,
which appears in the theory of synchrotron radiation and bremsstrahlung
(describe), has an integral representation

Kν(x) =
1
2

∫ ∞
0

exp
{
−x

2

(
s+

1
s

)}
ds
s1−ν

. (44)

This can be written in the form

Kν(x) =
1
2

∫ ∞
0

exp
{
−f(s)

}
, f(s) =

x
2

(
s+

1
s

)
−(ν−1) loge s . (45)

Then

f ′(s) =
x
2

(
1− 1

s2

)
− ν − 1

s
, f ′′(s) =

x
s3

+
ν − 1
s2

, (46)

so that as x → ∞ , the condition f ′(s) = 0 is satisfied by s = 1 . Then
f ′′(1) ≈ x , and the method of steepest descents yields

Kν(x) ≈
√

π
2x

e−x , x � ν & 1 (47)

as the asymptotic approximation. Observe that retention of the ν contribu-
tion would lead to the next order term in the asymptotic expansion.
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4 Numerical Integration

The foregoing formal content is now supplemented by an exploration of nu-
merical aspects. The focus will be two-fold: first Newton-Cotes type ap-
proaches that are more elemental in character, and then a more sophisticated
technique, specifically Gaussian quadrature.

4.1 Newton-Cotes Formulae

These derived from the elemental approach of Newton’s theory of integra-
tion. The agenda is to compute areas under curves with increasing accuracy
and complexity of algorithm. The first method is to approximate functional
behavior on a sequence of intervals [xi, xi+1] by a piecewise linear construct,
thereby formulating the trapezoidal rule.

Plot: Trapezoidal Rule Construct

Then,

f(x) ≈ fi +
(
fi+1 − fi

)
x− xi
xi+1 − xi

. (49)

This then gives an integral approximation on this interval of∫ xi+1

xi

f(x) dx ≈ hi
2

(
fi+1 + fi

)
, hi = xi+1 − xi , (50)

with an error of the order of h3i . Often, the implementation is for a sequence
of evenly-spaced intervals. With hi = h for all i , the total integration over
two consecutive intervals becomes∫ xi+2

xi

f(x) dx ≈ h
2

(
fi + 2fi+1 + fi+2

)
.

(51)

The accuracy of this trapezoidal rule can clearly be improved by choosing
smaller intervals, unless their is a pathological problem with the integrand,
for example a singularity or sharp peak within the overall integration range.
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Simpson’s Rule for Numerical Integration




