
3 Improvement of Convergence

For efficient numerical evaluation of series, it is often important to accelerate
the rate of convergence. There are several standard tools of the trade to
effect such; here we will highlight three: Kummer’s method, development of
rational approximations, and Euler’s transformation.

3.1 Kummer’s Technique

The essence of Kummer’s method is to form convenient linear combi- A & W,
pp. 334–5nations between the series in question, and slowly converging series with

known sums. These combinations are chosen such that resulting combined
series possess a faster rate of convergence. While there is no unique choice
of comparison series, Kummer opted for the convenient (i.e. broadly useful)
set

α1 =
∞∑
n=1

1
n(n+ 1)

= 1 ,

α2 =
∞∑
n=1

1
n(n+ 1)(n+ 2)

=
1
4

,

(26)
...

αp =
∞∑
n=1

1
n(n+ 1) . . . (n+ p)

=
1

p (p!)
.

The first of these can be proven by appropriate partial fractions, and grouping
and relabelling of series terms

∞∑
n=1

1
n(n+ 1)

=
∞∑
n=1

(
1
n
− 1
n+ 1

)
= lim

N→∞

{
1 +

N∑
n=2

1
n
−

N∑
n=2

1
n

}
= 1 .

(27)
The general result can be proven by mathematical induction.
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• We first apply Kummer’s technique to Riemann’s zeta function ζ(3) ,
which converges at a rate similar to α2 . Form the linear combination

ζ(3) +
κ
4

=
∞∑
n=1

1
n3 + κα2 . (28)

This rearranges to the identity

ζ(3) +
κ
4

=
∞∑
n=1

(
1
n3 +

κ
n(n+ 1)(n+ 2)

)
. (29)

Clearly, the choice κ = −1 accelerates the convergence of the resultant series,
leading to

ζ(3) =
1
4

+
∞∑
n=1

3n+ 2
n3(n+ 1)(n+ 2)

, (30)

so that convergence now goes as 1/n4 . Using the Mathematica operation
Sum[f(n), {n, 1, N}], summing this to 10 terms gives 1.20132 and the
sum to 30 yields 1.20202 , very close to the precise value ζ(3) ≈ 1.20206 .

Plot: Accelerating Riemann ζ(3) Series

• Example 6: Consider the functional series

S(x) =
∞∑
n=1

1
(1 + 2n)2 − x2 ≡

π
4x

tan
πx
2
− 1

1− x2 , |x| < 1 . (31)

Now subtract α1/4 from the series to form

S(x)− 1
4

=
∞∑
n=1

{
1

(1 + 2n)2 − x2 −
1

4n(n+ 1)

}
(32)

= − 1− x2
4

∞∑
n=1

1
n(n+ 1) [(1 + 2n)2 − x2] .

This now converges more rapidly, as 1/n4 . For this particular case, the accel-
eration is exceedingly efficient, increase rapidity by two orders, not the usual
single order improvement enabled by Kummer’s technique. Only around 20
terms are now required to obtain precision to one part in 106 !
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∗ Using the identity in Eq. (31) affords a path to obtaining rational ap-
proximations for π . We choose x = 1/2 to give S(1/2) = π/2 − 4/3 .
Rearranging then gives

π =
8
3

+
1
2
− 3

2

∞∑
n=1

1
n(n+ 1) [4(1 + 2n)2 − 1]

(33)

=
19
6
− 3

2

∞∑
n=1

1
n(n+ 1) [3 + 16n+ 16n2]

.

This then yields the following sequence of rational approximations to π ,
employing just a handful of terms:

n = 1 : π ≈ 1321
420

(0.1% accuracy)

n = 2 : π ≈ 21779
630

(0.04% accuracy) (34)

n = 5 : π ≈ 4205393539
1338557220

(0.005% accuracy)

Series such as this for trigonometric functions can yield a myriad of rational
approximations to π .

3.2 Rational Approximation

Another technique is to form a rational function approximation to a series ex-
pansion to effect an acceleration of convergence. This approach is essentially
to form a Padé approximation, and is best illustrated by example.

• Example 1: Consider the logarithmic series

loge(1 + x) =
∞∑
n=1

(−1)n−1
xn

n
. (35)

Form

(1 + κx) loge(1 + x) =
∞∑
n=1

(−1)n−1 (1 + κx)
xn

n

(36)

= x+
∞∑
n=2

(−1)n−1
(

1
n
− κ
n− 1

)
xn .
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To improve the convergence of the series, we set κ = 1 , giving

(1 + x) loge(1 + x) = x+
∞∑
n=2

(−1)n xn

n (n− 1)
, (37)

and then relabel the series via n→ n+ 1 . The result is

loge(1 + x) =
x

1 + x

{
1−

∞∑
n=1

(−1)n xn

n (n+ 1)

}
. (38)

There is no need to stop here. The series in Eq. (38) can similarly have its
convergence accelerated. Setting

g(x) = loge(1 + x)− x
1 + x

, (39)

one forms

(1 + λx) g(x) =
x

1 + x

∞∑
n=1

(−1)n+1 xn

n (n+ 1)
(1 + λx)

(40)

=
x2

2(1 + x)
+

x2

1 + x

∞∑
n=1

(−1)n xn

n+ 1

(
1

n+ 2
− λ
n

)
.

Then choosing λ = 1 effects the acceleration, leading to

loge(1 + x) =
x (2 + 3x)
2 (1 + x)2

+
2x2

(1 + x)2
S(x) , (41)

where the remaining series is

S(x) =
∞∑
n=1

(−1)n+1 xn

n (n+ 1) (n+ 2)
, (42)

which converges quite rapidly when |x| ≤ 1 . Series expansions of both sides
of Eq. (41) using Mathematica verify the validity of the identity.

Plot: Accelerating the loge(1 + x) Series

• The leading term in Eq. (41), plus the first term of the series contribution,
clearly constitutes a Padé approximation involving low order polynomials
(a cubic divided by a quadratic). This acceleration of convergence technique
could be continued for a couple more iterations to improve the accuracy of
such a rational function approximation considerably.
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Accelerating the loge(1+x) Series

• Comparison of the cumulative sum -Sn(-1)n/n for the loge2=0.693147… 
series (blue dots), as a function of nmax, and the accelerated form (red dots) 
using the Pade approximant technique given in the lecture, illustrating 
the dramatic improvement of convergence.
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3.3 Euler’s Transformation

For alternating series, Euler’s transformation, which is derived using bino-
mial theory and is connected to transformations of hypergeometric functions,
can be a powerful tool. This can be cast as the identity

∞∑
s=0

(−1)s us = u0 − u1 + u2 . . .− un−1 +
∞∑
s=0

(−1)s

2s+1 ∆sun (44)

The new coefficients in the series are forward difference operators:

∆un = un+1 − un
∆2un = un+2 − 2un+1 + un (45)

∆3un = un+3 − 3un+2 + 3un+1 − un , etc.

These difference operators trace higher order “derivatives” of the functional
form of the series terms, and are generally rapidly-declining functions of s ,
so that the new series in Eq. (44) is rapidly convergent. In general,

∆sun =
s∑

m=0

(−1)s−m
( s
m

)
un+m . (46)

∗ In practice, one sums a modest number of terms first, before applying
the transformation to a domain where the asymptotic character of the series
terms is well-established.

• The powerful Euler technique cannot be applied to a series of positive
terms. However, Van Wijngaarden developed a transformation that could
morph a series of positive terms into an alternating one:

∞∑
r=1

vr =
∞∑
r=1

(−1)r−1wr , wr ≡ 1 +
∞∑
k=1

2k v2kr . (47)

These two tools provide a third, and computationally elegant method for
accelerating the convergence of series.
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5. INTEGRATION

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

This Chapter will outline techniques for evaluating definite integrals whose
indefinite integrals are not known. The focus will include:

∗ exact analytical methods, specifically special tricks for special cases,
contour integration in the complex plane, and exploitation of symmetry ar-
guments;

∗ approximate analytic methods, namely asymptotic series, and the
method of steepest descents (saddle-point methods);

∗ numerical approaches, emphasizing Newton-Cotes formulae such as
Simpson’s rule, and Gaussian quadrature.

1 Special Devices for Particular Cases

The tools outlined here can be very specific to the particular integral, and will
be illustrated by example. Two devices of more general applicability will be
highlighted, namely differentiation under the integral sign, and employment
of series expansions to render the integral in tractable form.

• Example 1: First consider the pair of integrals

JR =

∫ ∞
0

e−αx cos λx dx , JI =

∫ ∞
0

e−αx sin λx dx . (1)

The presence of exponentials and trigonometric functions in the integrands
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suggests the employment of complex exponentials. Hence, form

JR + iJI =

∫ ∞
0

e−αx ei λx dx =
1

α− iλ =
α + iλ
α2 + λ2

, (2)

from which can be deduced

JR =
α

α2 + λ2
, JI =

λ
α2 + λ2

. (3)

Accordingly, two birds are killed with one stone.

• Example 2: Consider now the case of the area under a Gaussian function:

I =

∫ ∞
0

e−t
2

dt . (4)

This can be squared to form

I2 =

∫ ∞
0

e−x
2

dx

∫ ∞
0

e−y
2

dy . (5)

Recognizing this as an area integration in Cartesian coordinates, one can
transform to the more convenient polar coordinates via x = r cos θ and
y = r sin θ . Then the square of the integral becomes

I2 =

∫ ∞
0

r e−r
2

dr

∫ π/2

0

dθ , (6)

since the area element is dA = dx dy = r dr dθ . These integrals are trivially
evaluated, and lead to a result π/4 , from which we find

I ≡
∫ ∞
0

e−t
2

dt =

√
π

2
. (7)

This is a particularly unique manipulation in that in order to successfully
apply the transformation to polar coordinates and generate separable inte-
grals in r and θ , it is necessary for the original integral to possess a simple
quadratic dependence in the argument of the exponential.
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1.1 The Power of Differentiation

The first moment of the Gaussian was derived in passing in the previous
example. The nth moment is defined via the integral

In(a) =

∫ ∞
0

tn e−a t
2

dt . (8)

Clearly, by simple change of variables, this is proportional to a−(n+1)/2 . Hav-
ing established

I0(a) =
1
2

√
π
a

, I1(a) =
1
2a

, (9)

routine differentiation under the integral sign in the variable a quickly es-
tablishes the “recurrence relation”

In+2 = − dIn
da

, (10)

which serves to determine all higher order moments given the first two in
Eq. (9). This illustrates the power of differentiation with respect to some
parametric variable. One finds

I2k(a) = (−1)k
dkI0
dak

= (−1)k
(2k − 1)!!

2k+1

√
π

a(2k+1)/2 ,

(11)

I2k+1(a) = (−1)k
dkI1
dak

= (−1)k
k!

2ak+1 .

• Example 3: Adding extraneous weighting functions can facilitate evalu-
ation when they collapse to constants in limiting cases. Consider

J =

∫ ∞
0

sinx
x

dx . (12)

This can be treated as a special case I(0) of the parametric function

I(α) =

∫ ∞
0

e−αx
sinx
x

dx . (13)

Differentiation then yields

I ′(α) = −
∫ ∞
0

e−αx sinx dx = − 1
1 + α2 , (14)
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using the result of Example 1. This is routinely integrated to yield

I(α) = C − arctanα . (15)

The constant of integration is determined by letting α → ∞ , for which
I(α) → 0 due to the precipitous reduction of the exponential factor in the
integrand. Hence, C = π/2 , and the final evaluation is

I(α) =
π
2
− arctanα ⇒ J ≡ I(0) =

π
2

. (16)

1.2 Series Expansions

Exploiting the potential for series expansions of the integrand can also expe-
dite evaluation, at least numerically. Again, we proceed via example.

• Example 4: Consider the integral

I =

∫ ∞
0

(loge x)2

1 + x2
dx =

∫ ∞
−∞

t2 et

1 + e2t
dt =

∫ ∞
0

t2 dt
cosh t

, (17)

where the change of variables x = et ⇒ dx = et dt has been employed.
Multiplying the integrand of the middle integral top and bottom by e−2t

suggests a geometric series expansion in e−2t to rewrite the denominator:

I =

∫ ∞
−∞

t2 e−t

1 + e−2t
dt = 2

∞∑
n=0

(−1)n
∫ ∞
0

t2 e−t e−2nt dt , (18)

The integrals are now simply evaluated to yield an alternating series, for
which consecutive terms can be grouped together to accelerate convergence,

I = 4
∞∑
n=0

(−1)n

(1 + 2n)3
= 8

∞∑
k=0

48k2 + 48k + 13
(1 + 4k)3 (3 + 4k)3

. (19)

This can quickly be summed to yield I ≈ 3.8758 .
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2 Contour Integration

The principal attribute of the Residue Theorem is that it facilitates integral A & W,
Sec. 7.1evaluation. The trick is to find a contour C that contains the desired integral

as one of its segments, while all other segments are easily calculated.

• Example 5: Consider the trivial example

I =

∫ ∞
0

dx
1 + x2

=
π
2

, (19)

which is analytically tractable. With f(z) = 1/(1 + z2) = 1/(z − i)/(z + i) ,
which has simple poles at z = ±i . The preferred choice of contour is a
semicircle of radius R that captures the entire upper half of the complex
plane when R→∞ . Only the pole at z = +i is enclosed by the contour.

y

x
R-R

zp

Figure 1: The semi-circular contour that is optimal for the 1/(1 + z2) inte-
gration. Only the simple pole at zp = +i is encircled by the contour and
thus contributes a residue to the integral evaluation.

With the straight portion of the contour coinciding with the real axis, this
portion generates twice the integral in Eq. (19). The integral along the semi-
circular portion is ∫ π

0

iR eiθ dθ
1 +R2 e2iθ

→ 0 as R → ∞ . (20)

Accordingly,

2I = 2πiRes(z = +i) = 2πi

(
1
2i

)
= π ⇒ I =

π
2

. (21)
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