
4. SERIES AND SUMMATION

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Common Examples of Infinite Series

We begin the chapter by briefly highlighting some popular examples of fi-
nite and (mostly) infinite series. First up is the binomial series, whose
coefficients define Pascal’s triangle:

(1 + x)n = 1 + nx+ n(n− 1)
x2

2!
+ . . . =

∞∑
m=0

n!
(n−m)!m!

xm . (1)

For integer n , the series terminates at n+ 1 terms. For n 6= 0, 1, 2, 3, 4, . . . ,
the series has infinitely many terms, but still has a valid representation within
its radius of convergence (see below). For example, setting n = −1 gives the
geometric series:

1
1 + x

= 1− x+ x2 − x3 + x4 + . . . (2)

which converges for |x| < 1 by the ratio test (see below). This Taylor series
is most useful when |x| � 1 .

• Integrating the above geometric series term by term (an operation not yet A & W,
Sec. 5.6demonstrated to be valid) yields the logarithmic series:

loge(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . =

∞∑
n=1

(−1)n+1 x
n

n
, (3)

which likewise converges for |x| < 1 .
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• If we replace x by x2 in the geometric series, and then integrate term by
term, we generate

arctanx = x− x3

3
+
x5

5
− x7

7
+ . . . =

∞∑
n=0

(−1)n+1 x2n+1

2n+ 1
, (4)

which yet again converges for |x| < 1 .

• To move to different class of series, we offer the familiar example of the
exponential series

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ . . . =

∞∑
n=0

xn

n!
, (5)

which converges for all real x . It clearly satisfies d(ex)/dx = ex , which can
be taken as the definition of the exponential function.

∗ Replacing x by ix , and taking real and imaginary parts, one quickly
generates the trigonometric series:

cosx = 1− x2

2!
+
x4

4!
+ . . . =

∞∑
n=0

(−1)nx2n

(2n)!
,

(6)

sinx = x− x3

3!
+
x5

5!
+ . . . ; =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
,

both of which also converge for all real x .

• Such series can be employed as a means to compute such functions, or to
manipulate various sequences of operations involving such functions. Before
proceeding to examples that illustrate the uses of series, we need to discuss
series convergence in more depth.

• All of these series are specific examples of Taylor series, expansions (in
these cases about x = 0 ) as series of successively higher-order derivatives.

2



2 Convergence

First, we define convergence formally. An infinite series
∑
an converges A & W,

Sec. 5.1to the sum S if

lim
N→∞

(
N∑

n=1

an

)
= S , (7)

i.e. the limit exists and equals S . The series converges absolutely if∑
|an| converges. Observe that absolute convergence implies convergence,

but not vice versa.

• Example 1: The alternating harmonic series

1− 1
2

+
1
3
− 1

4
+ . . . (8)

converges to loge 2 but is not absolutely convergent, since the harmonic
series is divergent.

• Theorem: If the terms an alternate in sign, and if |an| decreases mono-
tonically as n increases, then the sum

∑
an converges (but not necessarily

absolutely).

• Example 2: Consider again the series

loge(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . =

∞∑
n=1

(−1)n+1 x
n

n
. (9)

For x > 0 , the signs alternate, but is |an| = xn/n a monotonically-decreasing
function of n ? Take

d
dn

(
xn

n

)
=

xn

n2 (n loge x− 1) = 0 ⇒ n =
1

loge x
. (10)

Hence, if 0 ≤ x ≤ 1 the derivative is always negative, and |an| is monoton-
ically decreasing with n , so that the series converges by the theorem.

∗ For x > 1 , one can always find an n above which |an| starts increasing
with n . Accordingly, the theorem does not guarantee convergence, and the
series is, in fact, divergent.
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• Assessing convergence is an important protocol, since often we want to
perform multiple operations on series, such as differentiation and integration.
Reversing the orders of summation and other operations often can lead to
tractable results. In general, this can only be applied to absolutely convergent
series, which is why we want to identify domains of absolute convergence.

• Example 3: We illustrate the power of reversing orders of operations and
summation using the series

f(x) =
1

1.2
+

x
2.3

+
x2

3.4
+ . . . =

∞∑
k=1

xk−1

k(k + 1)
. (11)

The series can be summed by forming x2f(x) and then taking two deriva-
tives, presuming such an interchange is permissible. Then

d2

dx2
[
x2f(x)

]
=

∞∑
k=1

xk−1 ≡
∞∑
k=0

xk =
1

1− x . (12)

This ODE can be integrated routinely to yield a particular integral:

x2f(x) = cx+ d+ (1− x) loge(1− x) . (13)

This clearly must approach zero as x→ 0 , quickly establishing that d = 0 .
Then, expanding the right hand side in a Taylor series about x = 0 using

loge(1− x) = −x− x2

2
+O(x3) (14)

leads to the deduction that c = 1 since f(0) = 1/2 . It follows that the
series can be written in closed form:

f(x) =
1
x

+
1− x
x2

loge(1− x) . (15)

∗ This manipulation is viable generally on the domain |x| < 1 where the
series is absolutely convergent. To prove such, one would truncate the series,
reverse operations, and carefully deal with bounded remainders.

• To assess convergence, we need useful and powerful tests that are simple.
The simplest is the ratio test, but it often needs refinement.
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2.1 D’Alembert’s and Cauchy’s Ratio Test

The development of the ratio test is benchmarked against the geometric
series, which when truncated, takes the form A & W,

Sec. 5.2

SN = 1 + x+ x2 + . . .+ xN =
N∑

n=0

xn ≡ 1− xN+1

1− x . (16)

The last identity can be proved by multiplying both sides by 1− x . Thus,

1
1− x =

N∑
n=0

xn +
xN+1

1− x . (17)

Clearly the remainder term xN+1/(1− x) in this relationship does not con-
verge as N →∞ if |x| > 1 . In contrast, if |x| < 1 the remainder approaches
zero as N →∞ , indicating convergence of the series. For x = −1 the series
does not converge, oscillating to infinity. Evidently, we have defined a radius
of convergence for this series, a concept that can be extrapolated to much
broader cases:

• D’Alembert’s/Cauchy’s ratio test: if the ratio of magnitudes of suc-
cessive terms of a series has a limit r as n→∞ , i.e.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = r (18)

then the series converges (diverges) if this limit is r < 1 ( r > 1 ). If the limit
(radius of convergence) is less than unity, then convergence is absolute.

∗ In the geometric series example, r = |x| and so the ratio test is under-
pinned by comparison with the geometric series.

∗ The tricky case is when r = 1 , a common occurrence, for which the
series may or may not converge. Such cases require more sophisticated tests.

• Example 4: Consider yet again the logarithmic series

loge(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . =

∞∑
n=1

(−1)n+1 x
n

n
. (19)

Then the radius of convergence is also r = |x| < 1 , which is not surprising
since this series is simply obtained from the geometric one by integration.

5



2.2 The Cauchy-Maclaurin Integral Test

Another useful test is the Cauchy-Maclaurin integral test: a series
∑
f(n)

converges if and only if the infinite integral∫ ∞
1

f(x) dx (20)

converges, provided f(x) is monotonically decreasing. This can be proven A & W,
pp. 328–9by considering the integrals and areas in Fig. 1. The left panel bounds the

series from above and the right one from below.
328 Chapter 5 Infinite Series

FtcuRE 5.2 (a) Comparison of integral and sum-blocks leading.
(b) Comparison of integral and sum-blocks lagging.

Let f (x) be a continuous, monotonic decreasing function in which f (n) : an. Then

lnan converges if /i f @) dx is finite and diverges if the integral is infinite. For the lth
partial sum,

, t

si :)ian:l f {").
n: l  n:1

But

7i-t l
' , , 

J, f @)dx (s.19)

from Fig. 5.2a, f (x) being monotonic decreasing. On the other hand, from Fig. 5.2b,

1 i
si - ar. 

J, f 
{*)a*, 6.20)

in which the series is represented by the inscribed rectangles. Taking the limit as i -+ oo,
we have

(s.18)

= I,*l,*f  (x)dx =i",
n: l

f (x) dx * a1. (s.2r)

Hence the infinite series converges or diverges as the corresponding integral converges or
diverges. This integral test is particularly useful in setting upper and lower bounds on the
remainder of a series after some number of initial terms have been summed. That is.

Do,:D",*  D on,
n: l  n:1,  n:N1-1

where

fl1) = at
f(r) = at

@ og

f (x )dx< |  a
n:N*l

= I;,f (x) dx * au+r.
N+l

Figure 1: Graphical structure defining integral bounds for the Cauchy-
Maclaurin test for series convergence. (a) At left, comparison of integral
with sum blocks leading, and (b) on the right with the sum blocks lagging.

The bounds correspond to the inequalities∫ ∞
1

f(x) dx ≤
∞∑
n=1

f(n) ≤
∫ ∞
1

f(x) dx+ f(1) . (21)

Since f(n) is monotonic, then it becomes clear that the existence and finite-
ness of the infinite integrals forces the series to converge.

• It must be emphasized that monotonicity is required here. Oscillatory
cases can correspond to integral convergence but not series convergence. A
pathological example is provided by f(n) = sin[(2n + 1/2)π]/n , which is a
divergent harmonic series. Yet the integral of f(x) is convergent on [1,∞) .
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• Example 5: Consider the series for the Riemann zeta function:

ζ(s) =
∞∑
n=1

1
ns . (22)

For this,

an+1

an
=

(
n

n+ 1

)s

= 1− s
n

+O

(
1
n2

)
→ 1 as n → ∞ , (23)

so that the simple ratio test is inconclusive. However, f(n) = n−s is mono-
tonically declining in n , and the integral test gives convergence for s > 1 .
Convergence is slow when s . 2 , so an acceleration technique is then needed.

2.3 Gauss’ Refined Ratio Test

The ratio test can be polished to address cases where r = 1 is the limiting
ratio of terms. This is the essence of Gauss’ test, which states that if the A & W,

pp. 332–3ratio of consecutive terms satisfies

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1− s
n

+
B(n)
n2 , (24)

where B(n) is bounded as n → ∞ , then the series converges (diverges) if
this limit satisfies s > 1 ( s ≤ 1 ).

• Clearly this powerful test (useful for most pathological series a physicist
encounters) can be proved for s 6= 1 by comparison with the Riemann zeta
function series. For s = 1 , divergence is best proved by comparison with the
series

∞∑
n=1

1
n+ k

⇒ an+1

an
→ 1− 1

n
+
k + 1
n2 , (25)

whose divergence is established using the Cauchy-Maclaurin integral test.

• Example 5.2.4 in Arfken & Weber illustrates how the series solution to
Legendre’s equation corresponds to an s = 1 situation, and therefore is
formally divergent if not truncated owing to integer indices n .

7



3 Improvement of Convergence

For efficient numerical evaluation of series, it is often important to accelerate
the rate of convergence. There are several standard tools of the trade to
effect such; here we will highlight three: Kummer’s method, development of
rational approximations, and Euler’s transformation.

3.1 Kummer’s Technique

The essence of Kummer’s method is to form convenient linear combina- A & W,
pp. 334–5tions between the series in question, and a slowly converging series with

known sums. These combinations are chosen such that the resultant series
possesses a faster rate of convergence. While there is no unique choice of
comparison series, Kummer opted for the convenient (i.e. broadly useful) set

α1 =
∞∑
n=1

1
n(n+ 1)

= 1 ,

α2 =
∞∑
n=1

1
n(n+ 1)(n+ 2)

=
1
4

,

(26)
...

αp =
∞∑
n=1

1
n(n+ 1) . . . (n+ p)

=
1

p (p!)
.

The first of these can be proven by appropriate partial fractions, and grouping
and relabelling of series terms

∞∑
n=1

1
n(n+ 1)

=
∞∑
n=1

(
1
n
− 1
n+ 1

)
= lim

N→∞

{
1 +

N∑
n=2

1
n
−

N∑
n=2

1
n

}
= 1 .

(27)
The general result can be proven by mathematical induction.
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• We first apply Kummer’s technique to Riemann’s zeta function ζ(3) ,
which converges at a rate similar to α2 . Form the linear combination

ζ(3) +
κ
4

=
∞∑
n=1

1
n3 + κα2 . (28)

This rearranges to the identity

ζ(3) +
κ
4

=
∞∑
n=1

(
1
n3 +

κ
n(n+ 1)(n+ 2)

)
. (29)

Clearly, the choice κ = −1 accelerates the convergence of the resultant series,
leading to

ζ(3) =
1
4

+
∞∑
n=1

3n+ 2
n3(n+ 1)(n+ 2)

, (30)

so that convergence now goes as 1/n4 . Using the Mathematica operation
Sum[f(n), {n, 1, N}], summing this to 10 terms gives 1.20132 and the
sum to 30 yields 1.20202 , very close to the precise value ζ(3) ≈ 1.20206 .

Plot: Accelerating Riemann ζ(3) Series
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Accelerating Riemann z(3) Series

• Comparison of the cumulative sum Sn1/n3 for the Riemann zeta 
function z(3)=1.20206… (blue dots), as a function of nmax, and the 
accelerated form (red dots) using Kummer’s technique, which roughly 
halves the number of summed terms required for a given precision. 

5 10 15 20 25 30

1.10

1.12

1.14

1.16

1.18

1.20

nmax

Sum




