
5 WKB Approximation

As an alternative solution technique that is of an asymptotic nature, here the M & W,
Sec. 1-4WKB approximation is introduced, named after Wentzel, Kramers and

Brillouin, who developed it in the context of the Schrödinger equation. It is
explicitly applied to 2nd order ODEs of the form

d2y
dx2

+ f(x) y = 0 , (63)

where the coefficient f(x) varies slowly with x when compared with y(x) .

• Observe that any homogeneous, 2nd order linear ODE can be cast in this
form using the transformation on pp. 11-12 of Mathews and Walker (Eqs.
1-38 to 1-41). For the homogeneous ODE

d2ψ
dx2

+ p(x)
dψ
dx

+ q(x)ψ = 0 . (64)

we substitute ψ(x) = v(x) y(x) . Then the dy/dx term in the ensuing equa-
tion is identically zero for the choice

2
v′(x)
v(x)

= −p(x) ⇒ v(x) = exp

{
−1

2

∫ x

x0

p(x′) dx′
}

(65)

as an effective integrating factor. Then

f(x) =
v′′(x)
v(x)

+ p(x)
v′(x)
v(x)

+ q(x) ⇒ f(x) = q(x)− p′(x)
2
− [p(x)]2

4
.

(66)

For example, Bessel’s equation can be converted into this form, yielding
f(x) = 1− (n2 − 1/4)/x2 , which is slowly varying for x� n . Accordingly,
this highlights the asymptotic character of the ensuing analysis.

• Many physics equations are already in this form. The 1-D Schrödinger
equation

d2ψ
dx2

+
2m
~2
[
E − V (x)

]
ψ = 0 (67)
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satisfies the criterion if either the potential V (x) is a slowly-varying function,
or E � V (x) . In addition, the spatial component of the 1-D wave equation
[obtained by setting y ∝ exp(±i ωt) ]

∂2y
∂x2
− 1
c2
∂2y
∂t2

= 0 ⇒ d2y
dx2

+
ω2

c2
y = 0 (68)

is automatically of the desired form if the propagation speed c is a slowly-
varying function of x .

• The basic principle of the WKB technique is elementary — it is built upon
the fact that when f(x) is constant (call it k2 ), the solution is trivial:

d2y
dx2

+ k2 y = 0 ⇒ y ∝ e±i kx . (69)

Extrapolating this to cases where f(x) is almost, but not quite, constant,
the obvious trial ansatz is

y = ei φ(x) ⇒ y′ = i φ′ y and y′′ =
[
i φ′′ − (φ′)2

]
y , (70)

where φ(x) is almost, but not quite a constant times x . Substituting this
into Eq. (63) gives [

i φ′′ − (φ′)2 + f(x)
]
y = 0 . (71)

Then follows the key assumption that |φ′′| � f , a result that is guaran-
teed for constant f since then φ′′ = 0 identically. This then promotes the
dropping of that term as a first approximation, to obtain:

φ′ ≈ ±
√
f ⇒ φ(x) ≈ ±

∫ √
f(x′) dx′ . (72)

Accordingly, with this form, exp{i φ(x)} is the first approximation to the
solution of Eq. (63).

• We now seek a refinement to this, which is obtained by iteration. Starting
with Eq. (72), we can derive φ′′ ≈ ±f ′/(2

√
f) , and insert this into Eq. (71).

The result can be solved for φ′ to give

φ′ ≈ ±
√
f ± i

2
f ′√
f
≈ ±

√
f +

i
4
f ′

f

(73)

φ(x) ≈ ±
∫ √

f(x′) dx′ +
i
4

loge f(x) .
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The second term on the second line therefore serves as our correction term.
Note that the ± choice for φ′ in Eq. (72) uniquely specifies the ± under
the square root sign in Eq. (73), and they combine to yield a net positive M & W,

pp. 27-8sign for the loge f term. The final result for the WKB approximation is

y(x) ≈ 1

[f(x)]1/4
exp

{
±i
∫ √

f(x′) dx′
}

.

(74)

• Observe that in mathematical character, this is very similar to the method
of steepest descents (to be studied later) that is used to evaluate integrals,
highlighting the relationship between differential and integral equations.

• Observe that if f(x) > 0 , the solutions are oscillatory in nature, whereas
for f(x) < 0 they possess exponential character.

• Example 8: Consider the wave equation in Eq. (69), with the wavenum-
ber given by k = ω/c . Suppose the wave frequency ω is constant, but that
the wave speed c = c0(1 − x/L) (for x � L ) varies slowly over space on a
scale of the order of the damping scale L . Then for k0 = ω/c0 ,

f(x) = k2 ≈ k20

(
1 +

2x
L

)
⇒

√
f(x) ≈ k0

(
1 +

x
L

)
, (75)

and the WKB approximation generates the solution

y(x) ≈
(

1− x
2L

)
exp

[
±i k0x

(
1 +

x
2L

)]
. (76)

This is a propagating wave whose wavenumber slowly increases (wavelength
decreases) in x , and whose amplitude decreases at the same time: this means
it loses energy, appropriate for the interpretation of electromagnetic waves.

∗ This highlights the coupling between real parts (propagation) and imag-
inary parts (damping) of the wave’s phase φ [see Eq. (73)] that exemplify
dispersion theory in action, in this case where the speed of wave propaga-
tion and refractive index are spatially-dependent.
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• As a final note, with φ′ ≈ ±
√
f , the condition for validity of the WKB

approximation becomes

|φ′′| ≈ 1
2

∣∣∣∣ f ′√f

∣∣∣∣ � |f | . (77)

Observe that 1/
√
f ∼ 1/k is of the order of one wavelength if the solution

is oscillatory, or one e-folding length if it is exponential (i.e., when f < 0 ).
Accordingly, the approximation is valid if the fractional change in f(x) is
small over either the wavelength or the e-folding length, as appropriate.
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6 Numerical Solutions: Euler’s Method

Euler’s algorithm for the numerical solution of ordinary differential equations
is usually applied to first order ODEs of the form Garcia,

pp. 39-41
d
dx

y(x) = f(x, y) , (78)

with the initial condition y(x0) = y0 . The form of f(x, y) can be explicitly
known, or it could be more involved such as an integral expression appearing
in an integro-differential equation. In principal, a step-by-step solution may
be developed to arbitrary accuracy using a Taylor series expansion

y(x+ h) = y(x) + h y′(x) +
h2

2!
y′′(x) +

h3

3!
y′′′(x) + . . . (79)

In practice, evaluating higher order derivatives can be tedious, regardless of
whether they provide numerical or analytic tasks.

• Therefore, Euler’s method truncates the Taylor expansion, and usually
the compromise between expediency and precision dictates carrying calcula- A&W

Sec. 8.2tions up to at most the 4th order derivatives. If only the linear term is kept,
then one can perform a sequence of iterations

yk+1 = yk + hk y
′
k = yk + hk f(xk, yk) , hk = xk+1 − xk , (80)

to cover an interval [x0, xn] spanned by the set of sub-interval dividing points
xk . The point (x0, y0) provides a boundary condition. The set yk defines
an approximate solution to the ODE, and for this case of retaining only linear
derivatives, quickly becomes highly erroneous as k increases.

Plot: Euler’s method: Fixed and Variable Steps

∗ Normally, the sub-interval widths hk are set to an identical value h , but
this protocol does not have to followed, particularly of the variation of y(x)
changes considerably over the interval [x0, xn] , i.e. y′ possesses considerable
dynamic range. Then variable steps hk can be employed to advantage.
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Euler’s Method for ODE Solution



∗ Denser sampling, i.e. smaller h , usually provides greater numerical
precision, provided that the function f(x, y) has acceptable pathology, such
as being devoid of singularities on [x0, xn] . However, to more readily achieve
this, it is wiser to generalize the algorithm to include higher order derivatives.

• To extend Euler’s technique to higher derivatives, one can differentiate
Eq. (78) implicitly, which is quite routine using symbolic languages such
as Mathematica or Maple. The sequence of differential operations d/dx
automatically maps over to a sequence of algebraic evaluations:

d2y
dx2

=
d
dx

f(x, y(x)) =
∂
∂x

f(x, y(x)) +
dy
dx

∂
∂y

f(x, y(x))

(81)

≡ ∂
∂x

f(x, y(x)) + f(x, y(x))
∂
∂y

f(x, y(x)) ,

followed by

d3y
dx3

=
∂
∂x

(
d2y
dx2

)
+ f(x, y(x))

∂
∂y

(
d2y
dx2

)
,

(82)
d4y
dx4

=
∂
∂x

(
d3y
dx3

)
+ f(x, y(x))

∂
∂y

(
d3y
dx3

)
.

If the functional form of f is known, then the right hand sides of these
equations assume algebraic forms that are readily computed. If it is not,
then the Euler technique is more involved, requiring numerical evaluations
of the derivatives at each xk , but is of similar precision and robustness.

Plot: Example of Euler’s method using Mathematica

• Finally, note that second order ODEs can simply be distilled into two si-
multaneous first order ODEs, for y and v = dy/dx , and the Euler technique
then employed in a slightly more involved construction.
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Euler’s ODE Method: Mathematica Example



Euler’s ODE Method: Solution

•  Comparison of the Euler’s method numerical solution (dots) to the 
exact solution of the ODE, ex – 2 – 2x – x2 (solid curve).

•  The precision is excellent when expanding the Taylor series of 
derivatives to the fourth order.



7 Runge-Kutta Technique

[Reading Assignment: This is so that you know that it exists!]

The Euler technique effectively amounts to an iteration on the value of y Garcia,
Sec. 3.2and its first four derivatives. In a discrete scheme, these derivatives can be

approximated by finite difference methods, so that information about y at
a point xk and its predecessor points ck−1 . . . can be used to approximate
the derivatives. Hence, one can devise an iterative scheme that uses such
differences, and therefore is eminently suited to tackling problems where the
function f(x, y) is of a numerical nature. The Runge-Kutta method
is just such a refinement, and computes solutions to ODEs with an error
of the order of h5 . Here, we just state the iterative difference equations,
without derivation, and provide an illustrative example; the reader can refer
to Section 3.2 of Garcia, Numerical Methods for Physics for more details.

Fourth-order Runge-Kutta technique: Given a first order ODE of the
form in Eq. (78), the relevant formulas for computing the point (xn+1, yn+1)
given all preceding points (xk, yk) for k = 0, 1 . . . n , are

yn+1 = yn +
1
6

[
k0 + 2k1 + 2k2 + k3

]
, (83)

where

k0 = h f(xn, yn) ,

k1 = h f(xn + h/2, yn + k0/2) ,
(84)

k2 = h f(xn + h/2, yn + k1/2) ,

k3 = h f(xn + h, yn + k2) .

The Runge-Kutta method is stable, meaning that small errors do not get
amplified. This contrasts the Euler technique, which can be quite unstable,
especially when of low order.

∗ We shall discover in due course that the structure of this system of
equations is very reminiscent of Simpson’s rule for numerical integration,
a consequence of the similar origins for the two constructions.
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• Example 10: The Runge-Kutta scheme can be applied to the same ODE
as in Example 9 using the following Mathematica coding:

f[x , y ] := xˆ2 + y ;

RK[{x ,y }] := Module[{k1,k2,k3,k4},
k1=h*f[x,y];

k2=h*f[x+h/2,y+k1/2];

k3=h*f[x+h/2,y+k2/2];

k4=h*f[x+h,y+k3];

{x+h, y+(1/6)*(k1+2*k2+2*k3+k4)}]

h = 0.1; x0 = 0.0; y0 = -1.0;

outlist = NestList[RK, {x0,y0},20]

This can then be compared with the exact solution, just as for the Euler
method, and for all intensive purposes the plot is identical to that above.
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