
3 Linear ODEs with Non-Constant Coefficients

Now the pedagogy proceeds to generalize to non-constant coefficients, but A & W,
Sec. 9.7restricts itself to second order equations to render the analytic solution tech-

niques amenable. So, we have an inhomogeneous ODE

d2y
dx2

+ p(x)
dy
dx

+ q(x) y = f(x) . (22)

Presume for now that we can find a complimentary function yc = c1y1(x)+
c2y2(x) . Replace the constants by some unknown functions ui(x) to sym-
bolically write the particular integral (to be found) in the form

yp(x) = u1(x) y1(x) + u2(x) y2(x) . (23)

This serves as a solution to our original ODE. This step can be taken without
loss of generality, and the goal is to elicit an analytic form for yp(x) . We
can then write down the derivative:

y′p(x) = u1(x) y′1(x) + u2(x) y′2(x) +
{
u′1(x) y1(x) + u′2(x) y2(x)

}
. (24)

Because of our freedom in the choice of the ui functions, we can restrict
them so that the terms within the parenthesis can be set identically to zero:

u′1(x) y1(x) + u′2(x) y2(x) = 0 . (25)

This convenient assumption then leads to

y′p(x) = u1(x) y′1(x) + u2(x) y′2(x)
(26)

y′′p(x) = u′1(x) y′1(x) + u′2(x) y′2(x) + u1(x) y′′1(x) + u2(x) y′′2(x) .

Insertion of these derivatives and Eq. (23) into the original ODE, Eq. (22)
yields the second constraining equation for the ui functions:

u′1(x) y′1(x) + u′2(x) y′2(x) = f(x) . (27)

In navigating this step, remember that y1 and y2 are solutions of the ho-
mogeneous ODE.
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Simultaneous solution of Eqs. (25) and (27) gives(
u′1
u′2

)
=

1
W (y1, y2)

(
−y2 f
y1 f

)
, W (y1, y2) ≡ y1 y

′
2 − y′1 y2 . (28)

The function W (y1, y2) is known as the Wronskian of the two linearly-
independent complementary functions. Eq. (28) can then be simply inte-
grated as first order ODEs in the ui to yield

yp(x) =

∫ x

G(x, x′) f(x′) dx′ , (29)

where the kernel is

G(x, x′) ≡ y1(x
′) y2(x)− y1(x) y2(x

′)
W [y1(x

′), y2(x
′)]

(30)

and is entitled the Green’s function. Mathematically, the Green’s function
encapsulates the information of the differential operators in the ODE, which
often represent physically the force or action-at-a-distance character of the
field. Accordingly, this linear problem yields a particular solution that is a
sum (i.e. integral) over the source field f(x) , weighted by the physics kernel.

• Example 4: Consider the ODE (M & W p. 10)

d2y
dx2
− 2
x2
y =

1
x

. (31)

This has complementary functions y = xm , m = 2, −1 . Hence, the Wron-
skian is W = −3 , and the particular integral assumes the form yp =
u1x

2 + u2/x . The Green’s function is then

G(x, x′) =
x3 − (x′)3

3x x′
, (32)

and the particular integral is

yp(x) =

∫ x

G(x, x′) f(x′) dx′ = −x
2

+ c1x
2 +

c2
x

, (33)
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Unfortunately, there is no broadly applicable procedure to find the general
solution of the homogeneous ODE with non-constant coefficients, to start
this process off. However, often, one solution y1(x) is easily discerned, and
if it is known, another linearly independent solution y2(x) can be
found as follows. Observe that the Wronskian can be differentiated thus:

W (x) ≡ y1 y
′
2 − y′1 y2 ⇒ dW

dx
= y1 y

′′
2 − y′′1 y2 , (34)

with two cancelling terms resulting. The complementary functions ( y2(x) is
at present unknown) satisfy the ODE:

y′′1 + p y′1 + q y1 = 0 and y′′2 + p y′2 + q y2 = 0 . (35)

Multiplying the first by y2 and subtracting it from y1 times the second
yields the first order ODE

y1 y
′′
2 − y′′1 y2 + p(x)

{
y1 y

′
2 − y′1 y2

}
= 0 i.e.,

dW
dx

+ p(x)W = 0 (36)

The solution is (by now) routine for the complementary function:

W (x) = W (x0) exp

{
−
∫ x

x0

p(x′) dx′
}

(37)

for a constant of integration x0 . Observe that this solution for the Wronskian
is independent of either y1 and y2 , and depends only on the coefficient p(x) .

• Then it is straightforward to obtain y2 using the Wronskian:

d
dx

(
y2
y1

)
=

y1 y
′
2 − y′1 y2
y21

≡ W (x)
y21

⇒ y2 = y1

∫ x

x0

W (x′)
[y1(x

′)]2
dx′ (38)

This approach yields fruitful results. Often, as we shall see, special functions
and orthogonal polynomials will be routinely identified as series solutions of
particular second order ODEs. These will then seed the determination of
second, linearly-independent solutions that usually have very different char-
acter, for example possessing singular points.

∗ An example of this special function connection is the familiar ordinary
Bessel function Jn(x) of the first kind, that has a root at the origin, and its
counterpart Yn(x) of the second kind that has a singularity at x = 0 .
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4 Power Series Solutions: Frobenius’ Method

Now the ODE adventure takes us to series solutions for ODEs, a technique A & W,
Sec. 9.5that is often viable, valuable and informative. These can be readily applied

to high order ODEs with non-constant coefficients, usually focusing on ho-
mogeneous equations, but also amenable to particular solutions. Consider

y(n) + fn−1(x) y(n−1) + . . .+ f1(x) y′ + f0(x) y = 0 . (39)

• A point x = x0 is an ordinary point of this ODE if f0, f1 . . . fn−1 are
regular (i.e. analytic and single-valued) there. The general solution near
such an ordinary point can be represented by a Taylor series:

y(x) =
∞∑
m=0

cm (x− x0)m . (40)

• A point x = x0 is a regular singular point of this ODE if f0, f1 . . . fn−1
are not all regular there, but (x−x0) fn−1 , (x−x0)2 fn−2 . . . (x−x0)n f0 are
all regular at x0 . This essentially implies that y(x) must have a fixed order
divergence (or pole) at x0 . The general solution near such a regular singular
point can be represented by a Frobenius series:

y(x) = (x− x0)s
∞∑
m=0

cm (x− x0)m , (41)

with c0 6= 0 . Note that s is not necessarily an integer.

• Example 5: Consider Legendre’s ODE for the polynomials Pn(x) :

(1− x2) d
2y
dx2
− 2x

dy
dx

+ n(n+ 1) y = 0 . (42)

Expressed in the form of Eq. (39), this has coefficient functions of

f1(x) = − 2x
1− x2 , f0(x) =

n(n+ 1)
1− x2 . (43)

Hence, both f0 and f1 have simple poles at x = ±1 , and these are regular
singular points by the above definition.
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∗ Clearly, x = 0 is an ordinary point of Legendre’s ODE, because f0 and
f1 are both regular there. This then motivates the Taylor series expansion
about x = 0 :

y(x) =
∞∑
m=0

cm x
m , y′(x) =

∞∑
m=0

mcm x
m−1 ,

(44)

y′′(x) =
∞∑
m=0

m(m− 1) cm x
m−2 .

These are then routinely substituted into Legendre’s equation to yield

∞∑
m=0

[
(1−x2)m(m− 1) cm x

m−2− 2mcm x
m +n(n+ 1) cm x

m
]

= 0 . (45)

Next, we resolve this series by rendering all terms into forms proportional to
xm , which amounts to the substitution m→ m+ 2 in just one of the y′′(x)
contributions. This facilitates the development:

∞∑
m=0

[
(m+ 1)(m+ 2) cm+2−m(m− 1) cm − 2mcm +n(n+ 1) cm

]
xm = 0 .

(46)
Note, however, it comes at the price of potentially introducing a “boundary
condition” or constraint on c2 , c1 and c0 , because of the ad hoc addition
of two extra terms at the end of the series. Fortunately, in this case, the
coefficients of these extra terms are proportional to m(m− 1) for m = 0, 1 ,
and so are identically zero. This is not always the case.

• Since Eq. (46) must be valid for arbitrary x on the interval [−1, 1] , each
of the coefficients of xm must be identically zero, and one arrives at the
two-term recurrence relation:

cm+2

cm
=

m(m+ 1)− n(n+ 1)
(m+ 1) (m+ 2)

≡ (m− n) (m+ n+ 1)
(m+ 1) (m+ 2)

. (47)

The solutions to Eq. (42) satisfying the constraint in Eq. (47), as applied to
the Taylor series, are known as Legendre functions.

∗ Observe that for m = n or m = −(n+ 1) , the series is truncated after
a finite number of terms. Hence, if n is an integer (positive or negative), the
solutions so derived are known as Legendre polynomials Pn(x) .

10



• The technique we have employed to ascertain series solution to Legendre’s
ODE is generally called Frobenius’ method.

• If one chooses c1 = 0 , then cm = 0 for all odd m , and the solution is
even in x . Alternatively, if one sets c0 = 0 , then cm = 0 for all even m ,
and the solution is odd in x , i.e. of opposite parity.

∗ This dichotomization delineates two linearly independent solutions (one
even, one odd) of Legendre’s ODE.

∗ The compact mathematical form for Legendre polynomials of the first
kind is

Pn(x) =
1
2n

[n/2]∑
m=0

(−1)m (2n− 2m)!
m! (n−m)! (n− 2m)!

xn−2m , (48)

where the notation [n/2] signifies the largest integer not exceeding n/2 .

Plot: Legendre Polynomials Pn(x) for n = 1, 2, 3, 4

• Legendre’s ODE usually arises in treating the θ angular part of par-
tial differential equations with spherical symmetry (e.g. Laplace’s equation,
∇2φ = 0 , or the Schrödinger equation) by the technique of separation of
variables (to be encountered later). Then x represents cos θ , and physically-
realistic solutions must be bounded on the interval 0 ≤ θ ≤ π , i.e. |x| ≤ 1 .

• The above series solutions clearly diverge (proof to be evident in the se-
ries analysis portion of the course) if x = ±1 (the poles), unless they are
truncated, i.e. n is an integer. Accordingly, the physical imposition of
boundedness at the endpoints x = ±1 spawns the mathematical concept of
eigenvalues, or the physics concept of quantum numbers, n = integer.

∗ As we shall see, when treating partial differential equations, such phys-
ical impositions are commonplace, and yield a number of quantum numbers
that often matches (but never exceeds) the dimensionality of the problem.
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Legendre Polynomials Pn(x)

• Legendre polynomials (here for n=1,2,3,4) are bounded for all x. 
• Yet, x=1 are regular singular points, lead to second linearly independent 

solutions for each n that are unbounded as |x| → 1, displaying  
logarithmic divergences that are discerned using the Wronskian analysis.  
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• Example 6: Now, consider the Schrödinger equation for a one-dimensional
harmonic oscillator:

d2ψ
dx2

+ (E − x2)ψ = 0 . (49)

Here, x is a spatial coordinate, E is a constant (scaled energy), and ψ is
the wavefunction. Clearly, x = 0 is an ordinary point of the ODE, and so
we could perform a Taylor series expansion about it. However, this yields a
3-term recurrence relation, which is inconvenient.

∗ To avoid this, the essential exponential character of the solution at large
|x| can be extracted. This arises for x2 � E , for which ψ′′ − x2ψ ≈ 0 ,
leading to a solution ψ → exp{±x2/2} as |x| → ∞ , only one alternative of
which is bounded. This motivates the substitution

ψ(x) = y(x) e−x
2/2 , ψ′ = (y′ − x y) e−x

2/2 ,
(50)

ψ′′ =
[
y′′ − 2x y′ − (1− x2) y

]
e−x

2/2 .

The resulting ODE for y is then

d2y
dx2
− 2x

dy
dx

+ (E − 1) y = 0 (51)

which can be recognized as Hermite’s ODE by setting E = 1 + 2n .

• The Taylor series expansion about x = 0 in Eq. (44) can now be employed,
along with the series manipulations that were applied to the Legendre func-
tion example. The result is

∞∑
m=0

[
(m+ 1)(m+ 2) cm+2 + (E − 1− 2m) cm

]
xm = 0 , (52)

yielding a 2-term recurrence relation (for E = 1 + 2n )

cm+2

cm
=

2m+ 1− E
(m+ 1) (m+ 2)

≡ 2(m− n)
(m+ 1) (m+ 2)

. (53)

Again, we have two linearly-independent solutions, an even series ( c0 6= 0 ),
and an odd series ( c1 6= 0 ). Since cm+2/cm → 2/m as m→∞ , each series
traces that for the exponential exp(+x2) as x→∞ , rendering the solutions
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for ψ divergent there, unless the series terminate. This happens only when
n is an integer. The resulting finite power series are Hermite polynomials
Hn(x) . Thus, requiring a bounded solution mandates

E = En ≡ 1 + 2n (54)

for the eigenvalues, and

ψ(x) = ψn(x) ≡ Hn(x) e−x
2/2 (55)

for the eigenfunctions.

• Example 7: Finally, we will explore solutions to Bessel’s ODE for the
familiar ordinary Bessel functions Jn(x) :

x2
d2y
dx2

+ x
dy
dx

+ (x2 − n2) y = 0 . (56)

This naturally arises as the radial part ( x→ ρ ) of the solutions to PDEs in
cylindrical (ρ, φ, z) coordinates, for example ∇2φ = 0 in electrostatics.

• Here, x = 0 is a regular, singular point. Thus, the solution can be ex-
pressed as a Frobenius series:

y(x) = xs
∞∑
m=0

cm x
m , y′(x) = xs

∞∑
m=0

(m+ s) cm x
m−1 ,

(57)

y′′(x) = xs
∞∑
m=0

(m+ s) (m+ s− 1) cm x
m−2 .

These are then routinely substituted into Bessel’s equation to yield

∞∑
m=0

[
(m+ s)(m+ s��−1) +�����(m+ s) + (x2 − n2)

]
cm x

m+s = 0 . (58)

Again, one resolves this series by rendering all terms into forms proportional
to the same power of x , leading to a slightly more involved situation than
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that for Legendre’s ODE:

(s2 − n2) c0 x
s +
[
(s+ 1)2 − n2

]
c1 x

s+1

(59)

+
∞∑
m=0

{[
(m+ s+ 2)2 − n2

]
cm+2 + cm

}
xm+s+2 = 0 .

Accordingly, we have additional constraints. First, for c0 6= 0 , the coefficient
of xs must be non-zero, yielding an indicial equation:

s = ±n . (60)

Similarly, the coefficient of xs+1 must be zero, yielding either c1 = 0 , or
s + 1 = ±n . The former identity must apply, since the latter is clearly
incompatible with the indicial equation. Hence, c1 = 0 , and the operating
recurrence relation is

cm+2

cm
= − 1

(m+ s+ 2)2 − s2 = − 1
(m+ 2) (m+ 2 + 2s)

. (61)

∗ Observe that the s + 1 = ±n indicial equation (i.e. c0 = 0 ) actually
generates the same overall solution, just with a summation index relabelling.

• For n not an integer, the two linearly-independent solutions are given
by s = ±|n| . This case is often not realized on physical grounds, because
n frequently represents the wavenumber of the azimuthal dependence ei nφ ,
which must be an integer for a single-valued function.

• For n being an integer, the series is still infinite, and provides a valid solu-
tion for s = +|n| that is known as the familiar ordinary Bessel function
of the first kind:

Jn(x) =
∞∑
j=0

(−1)j

j! (n+ j)!

(
x
2

)n+2j

, n = 0, 1, 2, . . . (62)

Here we have set 2j = m+ 2 .

Plot: Bessel functions Jn(πx) for n = 1, 2, 3, 4

In contrast, the s = −|n| series blows up, since cm → ∞ as m → −2s .
Hence, for integer n , a second linearly-independent solution (the Yn(x)
Bessel function) must be obtained by alternative, more involved means —
for example, using Wronskian analysis.
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Bessel Functions  Jn(px)

• Ordinary Bessel functions (here for n=1,2,3,4) are bounded for all x. 
• As x=0 is a regular singular point, the second linearly independent solutions for 

each n are unbounded as |x| → 0, displaying  logarithmic or power-law 
divergences that are discerned using the Wronskian analysis.  
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