
2 Cubic Splines

• Splines are interpolations that are generally a sequence of functions that
span sequential data intervals, demanding continuity and differentiability
at the boundaries between intervals. It is usual to require continuity in
the second derivative also, forcing consideration of cubic polynomials fi(x) .
Such cubic splines, are the most popular choice of splines and interpolative
techniques, being common in image enhancement and graphics applications.

∗ Hence, we seek a fit to a set of points (xi, yi) with cubic functions fi(x)
defined on n− 1 intervals xi ≤ x ≤ xi+1 , i = 1, 2, . . . n− 1 . Obviously,

fi−1(xi) = fi(xi) = yi , i = 2, . . . , n− 1 ,

f ′i−1(xi) = f ′i(xi) ≡ y′i , i = 2, . . . , n− 1 , (12)

f ′′i−1(xi) = f ′′i (xi) ≡ y′′i , i = 2, . . . , n− 1 .

The derivatives y′i and y′′i are clearly unknowns, and byproducts of the
spline fit, i.e., they do not necessarily match the derivative of y = f(x) .

∗ Considering the second derivative of the cubic splines leads to linear
interpolations in f ′′i . Setting

ri =
x− xi
δi

, δi = xi+1 − xi , (13)

so that 0 ≤ ri ≤ 1 . It is trivial to determine the interpolation

f ′′i (x) = y′′i (1− ri) + y′′i+1ri , i = 1, . . . , n− 1 . (14)

Twice integrating this with respect to x and selecting constants to guarantee
continuity of the fi yields cubics with only y′′i as unknowns:

fi(x) = yi(1− ri) + yi+1ri−
δ2i
6
ri(1− ri)

[
(2− ri)y′′i + (1 + ri)y

′′
i+1

]
, (15)

for i = 1, . . . , n− 1 . Hence, we have satisfied continuity of the spline and its
second derivative at the data points, but not that of the first derivatives.

4

This is easily done by differentiating Eq. (15) and imposing f ′i−1(xi) = f ′i(xi) .
The result is a sequence of recurrence relations:

(xi − xi−1)y′′i−1 + 2(xi+1 − xi−1)y′′i + (xi+1 − xi)y′′i+1
(16)

= 6
[
yi+1 − yi
xi+1 − xi

− yi − yi−1
xi − xi−1

]
.

• This set of n − 2 simultaneous equations can be solved for the y′′i by
matrix techniques, or by using Mathematica’s Solve[] function.

∗ It should be noted that we are short two equations, and these pertain to
arbitrary choices of endpoint conditions at x1 and xn . One common choice
is setting y′′1 = 0 = y′′n , generating the so-called natural spline. The choice
can be tailored to the problem at hand.

Example 2: Consider a cubic spline fit to the function sin(x)/x on 0 <
x < 2π . Divide into two equal intervals (0, π) and (π, 2π) . Hence, we
trivially have y1 = 1 , y2 = 0 , y3 = 0 , and Mathematica can be used to
quickly derive

y′′1 = −1
3

, y′′2 =
2
π2 , y′′3 = − 1

2π2 , (17)

using the D[y, x] and Limit[y, x->0] operations on sin(x)/x . In the
cubic spline scheme, y′′2 is an unknown, and does not have to satisfy Eq. (17).
Neither are y′′1 and y′′3 so constrained; we set them according to Eq. (17)
given our freedom with the endpoints (i.e. this is not a natural spline)

Eq. (16) then yields

πy′′1 + 4πy′′2 + πy′′3 =
6
π
⇒ y′′2 =

1
12

+
13
8π2 , (18)

a 22% difference from the value in Eq. (17). The spline functions are then

f1(x) =
(π − x)
144π3

(
144 π2 − 39 π x+ 14 π3 x− 39x2 − 10π2 x2

)
(19)

f2(x) =
(π − x) (2π − x)

144π3

(
117π + 6 π3 − 51x− 2π2 x

)
5

and are plotted in Figure 2, indicating significant inaccuracy of the spline fit;
reducing the interval size will improve the fit accordingly.

1 2 3 4 5 6
x

-0.2

0.2

0.4

0.6

0.8

1

f(x)

Figure 2: A comparison of sin(x)/x and the cubic spline fit of Example 2.

∗ Observe that the first derivatives y′1, y
′
2, y
′
3 clearly do not match those

of the function at the spline interval boundaries.

∗ The formalism presented indicates that splines are extremely suitable
for functions that are purely numerical in nature, i.e. have been generated
as solutions of differential or integral equations, or Monte Carlo or other
numerical simulations. Higher order n splines generally imply better fits.

3 Least Squares Fitting

This technique borrow heavily on statistics, since it is widely used in fitting
experimental/observational data with scatter; it is not treated in this course.
The interested reader can look at Section 14-7 of Mathews & Walker. The
Mathematica function for this is Fit[data, functions, variables].

6

4 Padé Approximations

• Functions can often possess significant ranges of values over the domains of
interest, so sometimes it is expedient to use a different form of approximation,
namely a ratio of polynomials. Such a rational function fit (technically not
an interpolation) to f(x) is called a Padé Approximation:

f(x) ≈ fP(x) ≡ Pn(x)
Qm(x)

, (20)

where

Pn(x) =
n∑

k=0

pkx
k , Qm(x) = 1 +

m∑
k=1

qkx
k . (21)

The values of the coefficients can be determined by using a power series
expansion for f(x) :

f(x) =
∞∑
k=0

fkx
k . (22)

It follows that (∞∑
k=0

fkx
k

) [
1 +

m∑
k=1

qkx
k

]
≈

n∑
k=0

pkx
k . (23)

Equating coefficients for various powers of xj yields the requisite number of
simultaneous linear equations that can be solved by either matrix methods,
or an algebra package such as Mathematica. We illustrate by example.

Example 3: Consider fitting the function f(x) = 1/ cosh(x) on an interval
0 ≤ x . Our goal is to obtain an approximation P2(x)/Q4(x) , where only
even powers of x appear due to the even nature of f(x) about x = 0 .

The series that contribute to Eq. (23) are easily obtained using the Math-
ematica operation Series[function, {x, x0, nmax}]. Specifically, the se-
quence of Mathematica code

ser1 = Simplify[Normal[Series[(1 + p2 xˆ2)
- (1 + q2 xˆ2 + q4 xˆ4)/Cosh[x], {x,0,6}]]] ;

Solve[{Coefficient[ser1, xˆ2]==0, Coefficient[ser1, xˆ4]==0,
Coefficient[ser1, xˆ6]==0}, {p2,q2,q4}]

7

can be used to establish the series expansion, extract the relevant coefficients,
and then solve the collected simultaneous equations. The result is

f(x) ≈ fP(x) =
P2(x)
Q4(x)

≡ 1− x2/30
1 + 7x2/15 + x4/40

. (24)

Using fP[x] := (1 - xˆ2/30)/(1 + 7 xˆ2/15 + xˆ4/40), the accuracy
of this Padé approximation can be elucidated by plotting it:

Plot[{1/Cosh[x], fP[x], (1/Cosh[x]-fP[x])/fP[x]}, {x, 0, 4.8},
AxesLabel -> {"x", "f[x], fP[x], Error"}]

While this generally appears accurate for x ≤ 3 , it still fades to only 50% ac-
curacy at x = 5 ; improved accuracy would be facilitated by retaining higher
orders in the polynomials, or by factoring out the exponential dependence.

1 2 3 4
x

0.2

0.4

0.6

0.8

1.0

f@xD, fP@xD, Error

Figure 3: A comparison of 1/ cosh(x) [red] and the Padé approximation
[blue] of Example 3, which fails for x & 4 as indicated by the fractional
error curve [green-orange].

Extracting the exponential can lead to the Padé approximation

f(x) ≈ e−x (1 + 2x/3 + 2x2/15)
1− x/3 + 7x2/15− 2x3/15 + x4/45

, (25)

which is marginally better than Eq. (24) when x . 5 , but substantially
better (though not excellent) at larger x .

8

5 Root Solving

• An important tool in the numerical arsenal concerns the numerical solution
of algebraic or transcendental equations (in one variable) to ascertain their
roots, viz.:

f(x) = 0 . (26)

There are two broadly-applicable algorithms that will be highlighted here:
the simple bisection technique, and the Newton-Raphson method, a
more elegant, but more delicate approach.

∗ Root-solving in more than one dimension is a complicated and awkward
business. For analytic functions, in two dimensions it can sometimes be
facilitated by using complex variables.

5.1 Numerical Bisection

• This is a “brute force” approach that is extremely robust. The only re-
quirement is that the root be bracketed so as to lie in a well-defined, finite
interval x1 ≤ x ≤ x2 . For this to occur, we require that f(x) switch sign
precisely once in this interval, i.e. that

f(x1)× f(x2) < 0 , (27)

together with the constraint that any sub-interval [xl, xu] within [x1, x2]
that satisfies f(xl)× f(xu) > 0 does not include the root.

∗ This implies that [x1, x2] contains one root to Eq. (26) only.

∗ Practically, subject to these provisos, the bisection technique can toler-
ate local extrema and inflection points within [x1, x2] , and accordingly is
extremely robust.

• The algorithm is to establish sequential sub-intervals [xi, xi+1] by bisect-
ing previous intervals, selecting xi+1 = (xi + xi−1)/2 , and then testing for

f(xi+1)× f(xi)
>

<
0 and f(xi+1)× f(xi−1)

>

<
0 , (28)

9

only one of which can be true. Then whichever test returns a positive product
dictates the replacement of either xi or xi−1 with an “update” xi+1 to
maintain bracketing of the root.

Plot: Graphical representation of the rapid convergence

• Solution to arbitrary precision is guaranteed, and convergence to this is
exponential, at a rate of around 2−n in fractional error for n iterations.

∗ This implies accuracies of typically 0.1% with ten iterations.

• Example 4: Consider finding the first two positive roots of the Bessel
function f(x) = J0(2π sinx) . The character of this function is revealed by
the Mathematica command

Plot[BesselJ[0, 2*Pi Sin[x]], {x, 0, Pi/2},
AxesLabel -> {"x", "f[x]"}]

which yields the plot

0.5 1.0 1.5
x

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

f@xD

Figure 4: The ordinary Bessel function f(x) = J0(2π sinx) over the interval
0 ≤ x ≤ π/2 , for the exposition on the bisection technique in Example 4.

10

From this it is clear that there are two roots in the [0, π/2] interval, one in
[0, π/4] , and one in [π/4, π/2] . This establishes the requisite bracketing.

By sequentially setting xmin = 0, xmax = Pi/4, and xmin = Pi/4, xmax=
Pi/2, the iteration can be performed on each interval using Mathematica:

While[xmax-xmin > epsilon, xmid = (xmax+xmin)/2;

If[f[xmid] * f[xmin] >=0, xmin=xmid, xmax=xmid]]

Here epsilon is the “tolerance,” which is generally set to a small number;
epsilon = 0.0001 is chosen here. The resultant values of the roots depend
slightly on the initial bracketing and the tolerance. One arrives at

x = 0.3927 and x = 1.0727 , (29)

the lower one being very close to π/8 . These approximate roots can be
checked with

FindRoot[f[x]==0, x, 0.4], FindRoot[f[x]==0, x, 1.0]

to yield x = 0.39276 and x = 1.07281 , with slightly greater numerical
precision.

• Note that there are more refined versions of the bisection algorithm, such as
invoking Lagrange interpolation with linear, quadratic or cubic functions (the
method of regula falsi), but in practice these only accelerate convergence
marginally, and are considerably more involved concerning their coding.

5.2 The Newton-Raphson Technique

• This approach uses Newton’s theory of differentiation to advantage in lo-
cating a root in an iterative process. It works best when a test value is prox-
imate to the actual root, and the specified function f(x) is well-behaved in
the sense that there are no extrema, inflection points or singularities in the
interval neighboring the root. This criterion amounts to bounds on f ′(x)
and higher order derivates of f(x) . The Newton-Raphson method is more
mathematically elegant than bisection, but its rate of convergence is only a
modest improvement, and its coding is more involved.

11

The technique generates a sequence of estimates xn for the root xr (i.e.
f(xr) = 0) using a simple recurrence relation, upon which the definition of
the derivative is based. Since f ′(x) ≈ [f(x + h) − f(x)]/h for sufficiently
small h , we can set x → xn and x + h = xn+1 , i.e. h = xn+1 − xn .
Assuming |f(xn+1)| � |f(xn)| , this approximation inverts to setting

xn+1 = xn −
f(xn)
f ′(xn)

. (30)

This recurrence relation amounts to finding the x-axis intercept x = xn+1 of
the tangent to f(x) at x = xn :

xn+1 xn

x

f@xD

Figure 5: Illustration of Newton’s method for obtaining an improved estimate
xn+1 for the root of f(x) .

∗ It is therefore clear that proximity of extrema (f ′(xn) ≈ 0) or closely
spaced roots will degrade the facility of this method.

∗ The Newton-Raphson technique works well for known mathematical
functions, but can also be viable for numerically-evaluated functions (e.g.
multiple integrals) whose first derivative can be computed with precision.

∗ The technique can also be adapted to analytic functions in the complex
plane, where the bisection method is unworkable.

12

