
An important generalization of Taylor series that is permissible in the com-
plex plane is the Laurent series. Every function that is analytic within an
annulus R1 < |z − z0| < R2 has a unique power series expansion

f(z) =
∞∑

n=−∞

cn (z − z0)n , cn =
1

2πi

∮
C

f(ζ) dζ
(ζ − z0)n+1 , (33)

where C is a circle of radius r such that R1 < r < R2 .

• If f(z) is analytic in a neighborhood of z = z0 , but not at z = z0 ,
then this point is called an isolated singularity. If the Laurent series is
truncated to a finite range of terms with n < 0 , i.e.

f(z) =
∞∑

n=−m

cn (z − z0)n , (34)

then z = z0 is a pole of order m . A pole of order unity is designated
as a simple pole. If the series about the singularity at z = z0 is not so
truncated, then this point is called an essential singularity. For example,
for f(z) = exp(−1/z) , the origin z = 0 is an essential singularity.

• Example 5: Consider Laurent series for the function

f(z) =
1

z (z − a)2
, |a| > 0 . (35)

This has a simple pole at z = 0 and a pole of order two at z = a , as be-
comes obvious when expressing it via partial fractions:

f(z) =
1
a2z
− 1
a2(z − a)

+
1

a(z − a)2
. (36)

One can then form a Laurent series about z = 0 that has convergence within
the annulus a1 ≤ |z| ≤ a2 for any 0 < a1 < a2 < a . Thus,

f(z) =
1

z (a− z)2
=

1
a2z

1
(1− z/a)2

(37)

=
1
a2z

(
1 +

2z
a

+
3z2

a2
+

4z3

a3
+

5z4

a4
+ . . .

)
.

The second factor is expanded using a binomial series form.
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6 The Theorem of Residues

To conclude this brief exposition of complex analysis, our focus will turn to a A & W,
Sec. 7.1powerful tool of use in the evaluation of integrals. If f(z) is analytic within

and on a closed contour C , except for a finite number of isolated singularities
inside C (at z = z0, z1 . . . ), then the Residue Theorem states that

∮
C

f(z) dz = 2πi
∑
n

Res [f(zn)] =
∑
n

∮
Cn

f(z) dz .

(38)

Here, Cn is a contour that specifically surrounds z = zn but no other
singularities. Accordingly, Res[f(zn)] (or Res[zn]) is called the Residue of
f at z = zn , and it is precisely c−1 , the coefficient of 1/(z − zn) in the
Laurent series expansion of f(z) around z = zn .

• Proof: Using the Laurent series expansion, for the zn pole we have∮
Cn

f(z) dz =
∞∑

k=−∞

ck

∮
Cn

(z − zn)k dz , (39)

Clearly, if k ≥ 0 , then as (z−zn)k is analytic, the contour integrals of these
terms contribute zero each. If k ≤ −2 , zero also results, since the integrals
are just higher-order derivatives of a constant function. [This is alternatively
demonstrated in Problem 6.4.1 of Arfken & Weber.] Only the k = −1 term
is retained, and∮

Cn

f(z) dz = c−1

∮
Cn

dz
z − zn

= 2πi c−1 , (40)

as desired. Selecting the contours Cn so that they successively surround
each of the poles zn then proves the Residue Theorem.

∗ The ability to isolate each of the poles and surround them by quasi-
circular portions of an extended contour is the reason why the result is con-
strained to a finite number of singularities.
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• Recipes for calculating residues include:

Simple pole: Res[f(a)] = lim
z→a

(z − a) f(z) ,

(41)

mthorder pole: Res[f(a)] =
1

(m− 1)!
lim
z→a

dm−1

dzm−1

[
(z − a)m f(z)

]
.

Also, if f(z) = P (z)/Q(z) , with Q(a) = 0 but P (a) 6= 0 , then for a simple
pole, Resf(a) = P (a)/Q′(a).

• Example 6: Consider again the Laurent series for the function

f(z) =
1

z (z − a)2
, |a| > 0 , (42)

about z = 0 . The Residue Theorem can be employed to evaluate the series
coefficients:

cn =
1

2πi

∮
C

dζ
ζn+2(ζ − a)2

= Res

[
1

ζn+2(ζ − a)2

]
ζ=0

. (43)

Thus,

cn =


0 , n ≤ −2 ,

1
a2

, n = −1 ,

n+ 2
an+3 , n ≥ 0 ,

(44)

and the Laurent series is (for k = n+ 1 )

f(z) =
∞∑

n=−∞

cnz
n =

∞∑
k=0

k + 1
a2 z

(
z
a

)k
(45)

as before.

• The power of the Residue Theorem will become apparent when techniques
for integral evaluation will be explored later in the course.
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2. INTERPOLATION, FITTING
AND ROOT SOLVING

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Lagrange Interpolation

• A common technique for interpolation using polynomials. We start with
a set of n+ 1 data points (xk, f(xk) ) , 0 ≤ k ≤ n . Consider the fit

f(x) ≈ Pn(x) =
n∑

k=0

wk(x) f(xk) (1)

where Pn(x) is an nth degree polynomial. We require equality at all the
x = xj , so that

f(xj) =
n∑

k=0

wk(xj) f(xk) . (2)

The simplest (but not necessarily unique) way to achieve these equalities is
to demand that the weighting functions wk(x) assume following form

wk(x) =
1
βk

k−1∏
m=0

(x− xm)
n∏

m=k+1

(x− xm) , (3)

i.e., nth degree polynomials. With the definition

αn(x) ≡
n∏

m=0

(x− xm) ,

(4)

the weighting function becomes wk(x) = αn(x)/[βk(x− xk)] .
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• This form, substituted into Eq.(2) yields non-zero contributions only for
k = j , implying wj(xj) = 1 and

βj =

j−1∏
m=0

(xj − xm)
n∏

m=j+1

(xj − xm) ≡ α′n(xj) . (5)

The equivalence to α′n(xj) is perhaps most easily established by taking log-
arithms of each side of Eq. (4). It follows that

Pn(x) =
n∑

k=0

αn(x)
(x− xk)α′n(xk)

f(xk) .

(6)

This is the principal equation of Lagrange Interpolation.

∗ It is a good technique for functions of modest dynamic range.

∗ Example 1: Consider

f(x) =
loge(1 + x)

x
, 0 < x ≤ 1 . (7)

Take exact values/limits at x = 0 , 1/2 , 1 . Then

α2(x) = x
(
x− 1

2

)
(x− 1) (8)

and

α′2(0) =
1
2
, α′2(1/2) = −1

4
, α′2(1) =

1
2
, (9)

so that the Lagrange interpolating function is

P2(x) = 2.0
(
x− 1

2

)
(x− 1) − 3.2437 x(x− 1) + 1.3863 x

(
x− 1

2

)
, (10)

with less than 0.5% error on (0, 1] .

N.B. Interpolations of a polynomial reduce to the polynomial itself when they
are of equal or higher order.
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Figure 1: A comparison of loge(1 + x)/x and the Lagrange interpolating
function of Example 1.

• Increasing order does not necessarily imply increasing accuracy.

Examples of this can be seen in bumpy or discontinuous functions, such as
step functions. Then piecewise lower-order (e.g. linear) interpolations may
prove superior to higher order polynomials.

∗ Hence careful consideration of the construction of an interpolation on a
case-by-case basis is warranted.

• A semi-formal (and case-specific) analysis of accuracy is provided in Math-
ews & Walker (p. 348). Without reproducing the details, the accuracy of
the Lagrange interpolation is of third-order, i.e.∣∣∣Pn(x) − f(x)

∣∣∣ ∼ (xn − x0)
3

n3

∣∣∣f ′′′(x)
∣∣∣ . (11)

This can be established using Taylor series expansions.

∗ Hence, discontinuities, singularities and cusp points are prime locations
for where accuracy is rapidly degraded.
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2 Cubic Splines

• Splines are interpolations that are generally a sequence of functions that
span sequential data intervals, demanding continuity and differentiability
at the boundaries between intervals. It is usual to require continuity in
the second derivative also, forcing consideration of cubic polynomials fi(x) .
Such cubic splines, are the most popular choice of splines and interpolative
techniques, being common in image enhancement and graphics applications.

∗ Hence, we seek a fit to a set of points (xi, yi) with cubic functions fi(x)
defined on n− 1 intervals xi ≤ x ≤ xi+1 , i = 1, 2, . . . n− 1 . Obviously,

fi−1(xi) = fi(xi) = yi , i = 2, . . . , n− 1 ,

f ′i−1(xi) = f ′i(xi) ≡ y′i , i = 2, . . . , n− 1 , (12)

f ′′i−1(xi) = f ′′i (xi) ≡ y′′i , i = 2, . . . , n− 1 .

The derivatives y′i and y′′i are clearly unknowns, and byproducts of the
spline fit, i.e., they do not necessarily match the derivative of y = f(x) .

∗ Considering the second derivative of the cubic splines leads to linear
interpolations in f ′′i . Setting

ri =
x− xi
δi

, δi = xi+1 − xi , (13)

so that 0 ≤ ri ≤ 1 . It is trivial to determine the interpolation

f ′′i (x) = y′′i (1 − ri) + y′′i+1ri , i = 1, . . . , n− 1 . (14)

Twice integrating this with respect to x and selecting constants to guarantee
continuity of the fi yields cubics with only y′′i as unknowns:

fi(x) = yi(1− ri) + yi+1ri −
δ2i
6
ri(1− ri)

[
(2− ri)y

′′
i + (1 + ri)y

′′
i+1

]
, (15)

for i = 1, . . . , n− 1 . Hence, we have satisfied continuity of the spline and its
second derivative at the data points, but not that of the first derivatives.
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This is easily done by differentiating Eq. (15) and imposing f ′i−1(xi) = f ′i(xi) .
The result is a sequence of recurrence relations:

(xi − xi−1)y
′′
i−1 + 2(xi+1 − xi−1)y

′′
i + (xi+1 − xi)y

′′
i+1

(16)

= 6
[
yi+1 − yi
xi+1 − xi

− yi − yi−1
xi − xi−1

]
.

• This set of n − 2 simultaneous equations can be solved for the y′′i by
matrix techniques, or by using Mathematica’s Solve[] function.

∗ It should be noted that we are short two equations, and these pertain to
arbitrary choices of endpoint conditions at x1 and xn . One common choice
is setting y′′1 = 0 = y′′n , generating the so-called natural spline. The choice
can be tailored to the problem at hand.
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