
3 Differentiation

Now we proceed to extend Newton’s theory of differential calculus to the A & W,
Sec. 6.2complex plane, a task that was extensively researched by Cauchy. A function

w = f(z) is defined to be analytic at z if it has a derivative there in the
Newtonian sense, i.e. if

f ′(z) ≡ lim
∆z→0

f(z + ∆z)− f(z)
∆z

(13)

exists, and is independent of the path by which ∆z → 0 . This provides a
robust definition of the derivative in the complex plane.

3.1 The Cauchy-Riemann Relations

The path-independence of the derivative is a crucial feature, and yields an
attractive and powerful constraint on the functions u(x, y) and v(x, y) .

Plot: General Derivation of Cauchy-Riemann Relations

For example, we can evaluate the limit in each of the x and y directions:

df
dz

=
d(u+ i v)
d(x+ i y)

=
∂u
∂x

+ i
∂v
∂x

if dy = 0 , (14)

=
∂v
∂y
− i ∂u

∂y
if dx = 0 .

These must be the same, for an analytic function. Hence, equating real and
imaginary parts gives the Cauchy-Riemann relations:

∂u
∂x

=
∂v
∂y

,
∂v
∂x

= − ∂u
∂y

.

(15)

These are necessary and sufficient (not proven) for f(z) = u(x, y)+ i v(x, y)
to be analytic. If f(z) is analytic everywhere it is called entire.
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Derivation of the Cauchy-Riemann Relations


The full derivation of the Cauchy-Riemann relations
accommodates any paths y = y(x) about a point z :

df

dz

=
d(u+ i v)
d(x+ i y)

=
(du+ idv) (dx� idy)

dx

2 + dy

2

=
@u

@x

1
1 + [y0(x)]2

+
@v

@y

[y0(x)]2

1 + [y0(x)]2

+i

@v

@x

1
1 + [y0(x)]2

� i

@u

@y

[y0(x)]2

1 + [y0(x)]2
.

For arbitrary y(x) and therefore also its derivative
y

0(x) , this can only be of fixed value if both

@u

@x

=
@v

@y

and
@v

@x

= � @u

@y

are satisfied. This completes the general derivation.
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• Example 2: Consider A/W problem 6.2.1. For an analytic function,

∇2u =
∂2u
∂x2

+
∂2u
∂y2

=
∂
∂x

(
∂v
∂y

)
− ∂
∂y

(
∂v
∂x

)
= 0

(16)

∇2v =
∂2v
∂x2

+
∂2v
∂y2

= − ∂
∂x

(
∂u
∂y

)
+

∂
∂y

(
∂u
∂x

)
= 0 ,

i.e. u and v satisfy Laplace’s equation, and are called harmonic functions.
Furthermore, another simple consequence of the C-R relations is

0 = −∂u
∂x

∂u
∂y

+
∂u
∂y

∂u
∂x

=
∂u
∂x

∂v
∂x

+
∂u
∂y

∂v
∂y
≡ ~∇u · ~∇v , (17)

so that the vector gradients of u and v in the (x, y) plane are orthogonal:

~∇u · ~∇v = 0 for ~∇g =

(
∂g
∂x

,
∂g
∂y

)
. (18)

Accordingly, u and v are termed conjugate functions, and their contour
plots in the (x, y) plane are everywhere orthogonal.

Plot: Contour plots of u and v for w(z) = 1/z

• N.B. The harmonic and conjugate nature of analytic functions renders
them ideal for representing 2D potentials such as those of the electrostatic or
magnetostatic variety, or velocity streamlines in fluid flow theory.

• Example 3: For the complex conjugation function f(z) = z∗ , u(x, y) =
x and v(x, y) = −y so that

∂u
∂x

= 1 ,
∂v
∂y

= −1 , (19)

clearly implying that f(z) is not analytic for any z ; this is not surprising
since it is a reflection mapping.

6



Conjugate u,v Functions for w(z) = 1/z


•  Plots were obtained with Mathematica using coding such as:

 ContourPlot[ x/(x^2 + y^2), {x, -1, 1}, {y, -1, 1},  ContourShading -> False, 
 PlotPoints -> 60, ContourStyle -> { Red, Red, Red, Red, Red}, Axes -> True, 
 AxesLabel -> {StyleForm["x", FontSize -> 16], StyleForm["y", FontSize -> 16]}] 

u = Re(1/z) = x/(x2+y2)                 (u,v) combined                v = Im(1/z) = -y/(x2+y2)




4 Integration

Integration in the complex plane serves as a rich and powerful extension
of Newton’s theory for the real line. If C is a piecewise continuous curve A & W,

Sec. 6.3(contour) in the complex plane, we can define the contour integral∫
C

f(z) dz =

∫
C

(u+ i v) (dx+ i dy)

(20)

=

∫
C

(u dx− v dy) + i

∫
C

(v dx+ u dy) .

More formally, the integral may be defined along the lines of Newton’s theory
for real integrals: ∫

C

f(z) dz = lim
n→∞

n∑
j=1

f(ζj) [zj − zj−1] (21)

for |zj − zj−1| → 0 as n→∞ , and the point ζj lying somewhere along the
curve C between zj−1 and zj .

4.1 The Cauchy Integral Theorem

If C is a closed curve and f(z) is analytic within its enclosed area, then
without proof, we state the Cauchy Integral Theorem:∮

C

f(z) dz = 0 .

(22)

It can be proven from the Cauchy-Riemann conditions, when f ′(z) is con-
tinuous, using Stoke’s Theorem to convert the line integrals to surface ones. A & W,

pp. 420-2Alternatively, the Goursat proof is structured around the more formal def-
inition of integral/differential calculus, and does not require continuity (as
opposed to existence) of the first derivatives — an unecessary restriction.

[Reading Assignment: A/W pp. 420–422: Stoke’s Theorem and Goursat
Proofs of the Cauchy Integral Theorem]
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• Example 4: For the function f(z) = (z − a)−1 , the derivative df/dz =
−1/(z − a)2 exists except at the singularity z = a . Hence the contour
integral in Eq. (22) is zero if C does not enclose z = a .

If, however, C encloses z = a , the Cauchy Integral Theorem cannot be
applied, and the integral must be evaluated explicitly. If z = a does not lie
on C , it is always possible to find a circular contour Cr of radius r that is
centered on z = a but within C .

x

Figure 1: Contour geometry around z = a for the Cauchy Integral Theorem.

By constructing a thin filamentary connection between contours C and Cr ,
we can apply the Cauchy Integral Theorem to establish that∮

C

dz
z − a +

∮
Cr

dz
z − a = 0 (23)

in the limit that the filament is infinitesimally thin. Then, setting

z − a = r ei θ ⇒ dz = i r ei θ dθ , (24)

the integrals can be evaluated:∮
C

dz
z − a = −

∮
Cr

dz
z − a =

∫ 2π

0

i r ei θ

r ei θ
dθ = 2πi . (25)

• Convention: Contours integrate in a counterclockwise direction to gener-
ate a positive sense to the integral.
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4.2 The Cauchy Integral Formula

The integration in Example 4 becomes a central foundation for the subse- A & W,
Sec. 6.4quent establishment of the Cauchy Integral Formula. If f(z) is analytic

within and on C (e.g., e−z , zα , Jn(z) , sin z ), and z = z0 lies within,
then

f(z0) =
1

2πi

∮
C

f(ζ) dζ
ζ − z0

.

(26)

The import of this theorem is that the values of an analytic function on a
closed curve determine the function everywhere within that curve. This is
a powerful property of complex analysis. Again, observe the similarity to a
2-D potential problem.

• To prove the Formula, we construct a circular contour Cε within C as in
Example 4, with Cε of radius ε and centered on z0 , and then attach a thin
filamentary connection between the two contours.

Plot: Geometry of C and Cε contours around z = z0

Then for C and Cε being both counterclockwise contours, we have∮
C

f(ζ)
ζ − z0

dζ −
∮
Cε

f(ζ)
ζ − z0

dζ = 0 . (27)

Then, setting

ζ − z0 = ε ei θ ⇒ dζ = i ε ei θ dθ , (28)

the integrals can be evaluated by eventually taking the limit ε→ 0 :∮
C

f(ζ)
ζ − z0

dζ =

∮
Cε

f(ζ)
ζ − z0

dζ =

∮
Cε

f
(
z0 + ε ei θ

)
ε ei θ

i ε ei θ dθ

(29)

−→ i f(z0)

∮
Cε

dθ = 2πi f(z0) .

The Cauchy Integral Formula then follows.

9



Contour Geometry for �
Cauchy Integral Formula


y

x

C

Cε

z = z0   

  ε 



5 Taylor and Laurent Series

Having established the Cauchy Integral Formula, it is now possible to discern A & W,
Sec. 6.6how derivatives of analytic functions can be expressed in contour integral

form. The first derivative can be written as follows

f ′(z) = lim
δz→0

f(z + δz)− f(z)
δz

= lim
δz→0

1
2πi δz

∮
C

(
1

ζ − z − δz −
1

ζ − z

)
f(ζ) dζ

(30)

=
1

2πi

∮
C

f(ζ)
d
dz

(
1

ζ − z

)
dζ

=
1

2πi

∮
C

f(ζ)
(ζ − z)2 dζ ,

with C being any contour surrounding z , within which f(z) is analytic.
Likewise, using mathematical induction as a method of proof, this result is
readily generalized to arbitrary higher order derivatives:

f (n)(z) =
n!

2πi

∮
C

f(ζ) dζ
(ζ − z)n+1 . (31)

Hence, the analytic nature of f(z) guarantees the existence of all derivatives.

• This sets up the possibility of expressing the function f(z) as a Taylor
series. Every function that is analytic at and around z = z0 possesses a
unique power series

f(z) =
∞∑
n=0

cn (z − z0)n , cn =
f (n)(z0)
n!

≡ 1
2πi

∮
C

f(ζ) dζ
(ζ − z0)n+1 , (32)

that converges within a circle of convergence that extends out to the
nearest singularity of f(z) . The proof is left as a reading assignment.

[Reading Assignment: A/W pp. 430-1: Proof of existence of a Taylor Series]
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