1. COMPLEX ANALYSIS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Uses of Complex Variables

e Uses of complex variables include (but are not limited to) the following
diverse tasks:

x manipulation of series and products
* solution space for homogenous linear ODEs of arbitrary order

* extension of the validity of solutions to second order ODEs to larger
domains (analytic continuation)

% tools for solving 2-D PDEs such as Laplace’s equation:
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x evaluation of definite integrals
% inversion of integral transforms

* connection of physically-related quantities under one formalism — e.g.
dispersion theory

* combinatorial manipulation



2 Functions of a Complex Variable

A complex number has the form z = x + iy where z and y are real,
and i = y/—1. Here, z = Re(z) is called the real part, and y = Im(z) is
called the imaginary part. This defines the standard Cartesian coordinate
representation.

e Addition of complex numbers works just as for real numbers:
Z1 + Z9 = (ZL’l + ZEQ) + 1 (yl + yg) . (2)

For other algebraic operations (and most other purposes), the polar coordi-
nate representation (Argand diagram) is more convenient:

z =x+iy = r(cos@+isind) = r = Ja2+y? , 0 = arctan (%)
(3)
Polar Coordinate/Argand Diagram Geometry

* Note that 6 is multi-valued unless we restrict it to an inverval of length
27 (e.g. [0,27]).

« The polar coordinate r = |z| is called the magnitude or modulus of
z,and 6 is referred to as the argument or phase of z.

e Defining the complex conjugate z* = z — 1y of z, then the square of

the magnitude of z is z*z = 2* + y?> = r%. The conjugate is useful in a
multiplicative role in rendering complex denominators in real form.

e For further convenience, we state Euler’s formula
cosf +isind = ¥ | (4)

which can serve as the definition of the exponential function (when the 6
domain is extended to the entire complex plane). It can be proved using
Taylor series expansions, once these have been defined for complex numbers.
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Argand Diagram
in Complex Plane

Diagram courtesy of Wikimedia Commons



e The polar coordinate form facilitates multiplication, division and inversion:

Multiplication: 21 % 25 = rirgé€’ (01462)
Division: 2)z = (r)r) e [ry = 2] # 0] (5)
Raising to a power: 2% = r®e'®

here, « is not necessarily an integer, and can even be a complex number.

o If we raise the Euler formula to the n'* power, where n is an integer, we
recover de Moivre’s formula

cosnf +isinnf = (cosh+isinf)" | (6)

which generates a host of well-known trigonometric identities in compact
fashion (usually equating real and imaginary parts).

e Example 1: Consider A/W problem 6.1.8, summation of two trigono-
metric series: let

Sr = Zp” cosnr , S = Zp sinnx (7)
n=0 n=0
Then form
S:SR+zSIZ;pe :nz%(pe ) :1——pe”” ) (8)

a geometric series summation that is valid iff [pe™| = |p| < 1. Since pe™™

is the conjugate of pe'@ it follows that

1—pe ™ (1—pcosz)+ipsine

= 2 i —iz\ 2 : (9)
L+p*—p(e”+e ™) 1—2pcosz+p

Isolating the real and imaginary parts generates the required identities:

1—pcosz p sinx
Sr = Sy = . 10
R 1—2pcosz+p° = 1 —2pcosx +p? (10)

Eq. (7) constitutes Fourier series expansions for these functions.



2.1 Complex Functions of a Complex Variable

Complex functions generally can be written in the form

w(z) = ulz, y) +iv(z, y) (11)

implying two separate functions (u, v) of the two real variables (z, y). The
problem of graphical representation is usually solved by “mapping” points
and curves from the z =x + iy to the w =wu+ v plane.

e Simple examples of mappings are addition (= translation), multiplication
(= scaling + rotation), and inversion (= inversion + reflection).

Mappings of Addition, Multiplication and Inversion

* Observe that among these, only addition preserves the shapes of curves.

e A more involved example is provided by w = 22 = r2e??; it maps the

upper half z plane onto the entire w plane (as does the lower half z plane).

* The semi-circle with center at the origin maps onto a full circle centered
at the origin. However, straight lines © = ¢ map over to hyperbolae, and
select hyperbolae map over to straight lines in the w plane:

Mappings for w = 22

e The inverse mapping w = /z therefore possesses a multi-valued problem,
which is solved by defining branches of the square-root function:

wi(z) = /ret? and  wy(z) = ret@tmiz (12)

This splits the z plane into two Riemann sheets, one for each branch. The
sheets are joined at a branch line (or branch cut) extending from z =0 to
z = 00 in any direction (though often along the positive real axis).

e Similarly, w(z) = 2"/ is n-fold multi-valued for integer n . In this case,

one defines a principal branch w(z) = r'/"¢'%/" as a single-valued function.

o Likewise, log.(z) =log, r+1 (0 +2nm) is infinitely multi-valued. Defining
a principal branch log,(z) =log, 7 +i6 on 0 <6 < 27, it is single-valued.
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Complex Plane Mapping w=z°
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From Mathews & Walker: Mathematical Methods of Physics





