1. COMPLEX ANALYSIS

Matthew Baring - Lecture Notes for PHYS 516, Fall 2022

1 Uses of Complex Variables

- Uses of complex variables include (but are not limited to) the following diverse tasks:
* manipulation of series and products
* solution space for homogenous linear ODEs of arbitrary order
* extension of the validity of solutions to second order ODEs to larger domains (analytic continuation)
* tools for solving 2-D PDEs such as Laplace's equation:

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0 \tag{1}
\end{equation*}
$$

* evaluation of definite integrals
* inversion of integral transforms
* connection of physically-related quantities under one formalism - e.g. dispersion theory
* combinatorial manipulation

2 Functions of a Complex Variable

A complex number has the form $z=x+i y$ where x and y are real, and $i=\sqrt{-1}$. Here, $x=\operatorname{Re}(z)$ is called the real part, and $y=\operatorname{Im}(z)$ is called the imaginary part. This defines the standard Cartesian coordinate representation.

- Addition of complex numbers works just as for real numbers:

$$
\begin{equation*}
z_{1} \pm z_{2}=\left(x_{1} \pm x_{2}\right)+i\left(y_{1} \pm y_{2}\right) \tag{2}
\end{equation*}
$$

For other algebraic operations (and most other purposes), the polar coordinate representation (Argand diagram) is more convenient:
$z=x+i y \equiv r(\cos \theta+i \sin \theta) \Rightarrow r=\sqrt{x^{2}+y^{2}}, \quad \theta=\arctan \left(\frac{y}{x}\right) \quad$.

Plot: Polar Coordinate/Argand Diagram Geometry

* Note that θ is multi-valued unless we restrict it to an inverval of length 2π (e.g. $[0,2 \pi]$).
* The polar coordinate $r=|z|$ is called the magnitude or modulus of z, and θ is referred to as the argument or phase of z.
- Defining the complex conjugate $z^{*}=x-i y$ of z, then the square of the magnitude of z is $z^{*} z=x^{2}+y^{2}=r^{2}$. The conjugate is useful in a multiplicative role in rendering complex denominators in real form.
- For further convenience, we state Euler's formula

$$
\begin{equation*}
\cos \theta+i \sin \theta=e^{i \theta} \tag{4}
\end{equation*}
$$

which can serve as the definition of the exponential function (when the θ domain is extended to the entire complex plane). It can be proved using Taylor series expansions, once these have been defined for complex numbers.

Diagram courtesy of Wikimedia Commons

- The polar coordinate form facilitates multiplication, division and inversion:

$$
\begin{array}{lrl}
\text { Multiplication: } & z_{1} * z_{2} & =r_{1} r_{2} e^{i\left(\theta_{1}+\theta_{2}\right)} \\
\text { Division: } & z_{1} / z_{2} & =\left(r_{1} / r_{2}\right) e^{i\left(\theta_{1}-\theta_{2}\right)} \tag{5}\\
\text { Raising to a power: } z^{\alpha} & =r^{\alpha} e^{i \alpha \theta}
\end{array}
$$

here, α is not necessarily an integer, and can even be a complex number.

- If we raise the Euler formula to the $n^{\text {th }}$ power, where n is an integer, we recover de Moivre's formula

$$
\begin{equation*}
\cos n \theta+i \sin n \theta=(\cos \theta+i \sin \theta)^{n} \tag{6}
\end{equation*}
$$

which generates a host of well-known trigonometric identities in compact fashion (usually equating real and imaginary parts).

- Example 1: Consider A/W problem 6.1.8, summation of two trigonometric series: let

$$
\begin{equation*}
S_{\mathrm{R}}=\sum_{n=0}^{\infty} p^{n} \cos n x \quad, \quad S_{\mathrm{I}}=\sum_{n=0}^{\infty} p^{n} \sin n x \tag{7}
\end{equation*}
$$

Then form

$$
\begin{equation*}
S=S_{\mathrm{R}}+i S_{\mathrm{I}}=\sum_{n=0}^{\infty} p^{n} e^{i n x}=\sum_{n=0}^{\infty}\left(p e^{i x}\right)^{n}=\frac{1}{1-p e^{i x}} \tag{8}
\end{equation*}
$$

a geometric series summation that is valid iff $\left|p e^{i x}\right| \equiv|p|<1$. Since $p e^{-i x}$ is the conjugate of $p e^{i x}$, it follows that

$$
\begin{equation*}
S=\frac{1-p e^{-i x}}{1+p^{2}-p\left(e^{i x}+e^{-i x}\right)}=\frac{(1-p \cos x)+i p \sin x}{1-2 p \cos x+p^{2}} \tag{9}
\end{equation*}
$$

Isolating the real and imaginary parts generates the required identities:

$$
\begin{equation*}
S_{\mathrm{R}}=\frac{1-p \cos x}{1-2 p \cos x+p^{2}} \quad, \quad S_{\mathrm{I}}=\frac{p \sin x}{1-2 p \cos x+p^{2}} \tag{10}
\end{equation*}
$$

Eq. (7) constitutes Fourier series expansions for these functions.

2.1 Complex Functions of a Complex Variable

Complex functions generally can be written in the form

$$
\begin{equation*}
w(z)=u(x, y)+i v(x, y) \tag{11}
\end{equation*}
$$

implying two separate functions (u, v) of the two real variables (x, y). The problem of graphical representation is usually solved by "mapping" points and curves from the $z=x+i y$ to the $w=u+i v$ plane.

- Simple examples of mappings are addition (= translation), multiplication ($=$ scaling + rotation), and inversion ($=$ inversion + reflection).

A \& W,
Sec. 6.7
Plot: Mappings of Addition, Multiplication and Inversion

* Observe that among these, only addition preserves the shapes of curves.
- A more involved example is provided by $w=z^{2}=r^{2} e^{2 i \theta}$; it maps the upper half z plane onto the entire w plane (as does the lower half z plane).
* The semi-circle with center at the origin maps onto a full circle centered at the origin. However, straight lines $x=c$ map over to hyperbolae, and select hyperbolae map over to straight lines in the w plane:

Plot: Mappings for $w=z^{2}$

- The inverse mapping $w=\sqrt{z}$ therefore possesses a multi-valued problem, which is solved by defining branches of the square-root function:

$$
\begin{equation*}
w_{1}(z)=\sqrt{r} e^{i \theta / 2} \quad \text { and } \quad w_{2}(z)=\sqrt{r} e^{i(\theta+2 \pi) / 2} \tag{12}
\end{equation*}
$$

This splits the z plane into two Riemann sheets, one for each branch. The sheets are joined at a branch line (or branch cut) extending from $z=0$ to $z=\infty$ in any direction (though often along the positive real axis).

- Similarly, $w(z)=z^{1 / n}$ is n-fold multi-valued for integer n. In this case, one defines a principal branch $w(z)=r^{1 / n} e^{i \theta / n}$ as a single-valued function.
- Likewise, $\log _{e}(z)=\log _{e} r+i(\theta+2 n \pi)$ is infinitely multi-valued. Defining a principal branch $\log _{e}(z)=\log _{e} r+i \theta$ on $0 \leq \theta \leq 2 \pi$, it is single-valued.

Trivial examples of mapping:

1. Addition $(\rightarrow$ translation)

$$
\begin{aligned}
& w(z)=z+z_{0} \\
& \left(z_{0}=x_{0}+i y_{0}\right)
\end{aligned}
$$

2. Multiplication (\rightarrow scaling + rotation)

$$
\begin{aligned}
& w=z z_{0} \\
& \left(z_{0}=r_{0} e^{i \theta_{0}}\right) \\
& w=r_{0} r e^{i\left(\theta+\theta_{0}\right)}
\end{aligned}
$$

3. Inversion (\rightarrow inversion + reflection $)$

$$
\begin{aligned}
w & =1 / z \\
& =\frac{1}{r} e^{-i \theta}
\end{aligned}
$$

Note even these trivial examples (except 1) do not preserve shape of curves.

Complex Plane Mapping w=z ${ }^{2}$

From Mathews \& Walker: Mathematical Methods of Physics

