1. COMPLEX ANALYSIS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Uses of Complex Variables

• Uses of complex variables include (but are not limited to) the following diverse tasks:

- * manipulation of series and products
- * solution space for homogenous linear ODEs of arbitrary order

* extension of the validity of solutions to second order ODEs to larger domains (analytic continuation)

* tools for solving 2-D PDEs such as Laplace's equation:

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0 \tag{1}$$

- * evaluation of definite integrals
- * inversion of integral transforms

* connection of physically-related quantities under one formalism — e.g. dispersion theory

* combinatorial manipulation

2 Functions of a Complex Variable

A complex number has the form z = x + iy where x and y are real, and $i = \sqrt{-1}$. Here, $x = \operatorname{Re}(z)$ is called the *real part*, and $y = \operatorname{Im}(z)$ is called the *imaginary part*. This defines the standard Cartesian coordinate representation.

• Addition of complex numbers works just as for real numbers:

$$z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2) \quad . \tag{2}$$

For other algebraic operations (and most other purposes), the polar coordinate representation (**Argand diagram**) is more convenient:

$$z = x + iy \equiv r(\cos\theta + i\sin\theta) \Rightarrow r = \sqrt{x^2 + y^2}, \ \theta = \arctan\left(\frac{y}{x}\right).$$
(3)

Plot: Polar Coordinate/Argand Diagram Geometry

* Note that θ is multi-valued unless we restrict it to an inverval of length 2π (e.g. $[0, 2\pi]$).

* The polar coordinate r = |z| is called the **magnitude** or **modulus** of z, and θ is referred to as the **argument** or **phase** of z.

• Defining the **complex conjugate** $z^* = x - iy$ of z, then the square of the magnitude of z is $z^*z = x^2 + y^2 = r^2$. The conjugate is useful in a multiplicative role in rendering complex denominators in real form.

• For further convenience, we state Euler's formula

$$\cos\theta + i\sin\theta = e^{i\theta} \quad , \tag{4}$$

which can serve as the definition of the exponential function (when the θ domain is extended to the entire complex plane). It can be proved using Taylor series expansions, once these have been defined for complex numbers.

Diagram courtesy of Wikimedia Commons

• The polar coordinate form facilitates multiplication, division and inversion:

Multiplication:
$$z_1 * z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

Division: $z_1/z_2 = (r_1/r_2) e^{i(\theta_1 - \theta_2)}$ $[r_2 = |z_2| \neq 0]$ (5)
Raising to a power: $z^{\alpha} = r^{\alpha} e^{i\alpha\theta}$.

here, α is not necessarily an integer, and can even be a complex number.

• If we raise the Euler formula to the n^{th} power, where n is an integer, we recover **de Moivre's formula**

$$\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n \quad , \tag{6}$$

which generates a host of well-known trigonometric identities in compact fashion (usually equating real and imaginary parts).

• Example 1: Consider A/W problem 6.1.8, summation of two trigonometric series: let

$$S_{\rm R} = \sum_{n=0}^{\infty} p^n \cos nx$$
, $S_{\rm I} = \sum_{n=0}^{\infty} p^n \sin nx$. (7)

Then form

$$S = S_{\rm R} + i S_{\rm I} = \sum_{n=0}^{\infty} p^n e^{i nx} = \sum_{n=0}^{\infty} \left(p e^{ix} \right)^n = \frac{1}{1 - p e^{ix}} \quad , \qquad (8)$$

a geometric series summation that is valid *iff* $|p e^{ix}| \equiv |p| < 1$. Since $p e^{-ix}$ is the conjugate of $p e^{ix}$, it follows that

$$S = \frac{1 - p e^{-ix}}{1 + p^2 - p (e^{ix} + e^{-ix})} = \frac{(1 - p \cos x) + i p \sin x}{1 - 2p \cos x + p^2} \quad . \tag{9}$$

Isolating the real and imaginary parts generates the required identities:

$$S_{\rm R} = \frac{1 - p \cos x}{1 - 2p \cos x + p^2} \quad , \quad S_{\rm I} = \frac{p \sin x}{1 - 2p \cos x + p^2} \quad . \tag{10}$$

Eq. (7) constitutes Fourier series expansions for these functions.

2.1 Complex Functions of a Complex Variable

Complex functions generally can be written in the form

$$w(z) = u(x, y) + i v(x, y) \quad , \tag{11}$$

implying two separate functions (u, v) of the two real variables (x, y). The problem of graphical representation is usually solved by "mapping" points and curves from the z = x + iy to the w = u + iv plane.

• Simple examples of mappings are *addition* (= translation), *multiplication* A & W, (= scaling + rotation), and *inversion* (= inversion + reflection). Sec. 6.7

Plot: Mappings of Addition, Multiplication and Inversion

* Observe that among these, only addition preserves the shapes of curves.

• A more involved example is provided by $w = z^2 = r^2 e^{2i\theta}$; it maps the upper half z plane onto the *entire* w plane (as does the lower half z plane).

* The semi-circle with center at the origin maps onto a full circle centered at the origin. However, straight lines x = c map over to hyperbolae, and select hyperbolae map over to straight lines in the w plane:

Plot: Mappings for $w = z^2$

• The inverse mapping $w = \sqrt{z}$ therefore possesses a multi-valued problem, which is solved by defining **branches** of the square-root function:

$$w_1(z) = \sqrt{r} e^{i\theta/2}$$
 and $w_2(z) = \sqrt{r} e^{i(\theta+2\pi)/2}$. (12)

This splits the z plane into two **Riemann sheets**, one for each branch. The sheets are joined at a **branch line** (or *branch cut*) extending from z = 0 to $z = \infty$ in any direction (though often along the positive real axis).

• Similarly, $w(z) = z^{1/n}$ is *n*-fold multi-valued for integer *n*. In this case, one defines a **principal branch** $w(z) = r^{1/n} e^{i\theta/n}$ as a single-valued function.

• Likewise, $\log_e(z) = \log_e r + i (\theta + 2n\pi)$ is infinitely multi-valued. Defining a principal branch $\log_e(z) = \log_e r + i \theta$ on $0 \le \theta \le 2\pi$, it is single-valued.

do not preserve shape of curves.

-

Complex Plane Mapping w=z^2

From Mathews & Walker: Mathematical Methods of Physics