
1. COMPLEX ANALYSIS

Matthew Baring — Lecture Notes for PHYS 516, Fall 2022

1 Uses of Complex Variables

• Uses of complex variables include (but are not limited to) the following
diverse tasks:

∗ manipulation of series and products

∗ solution space for homogenous linear ODEs of arbitrary order

∗ extension of the validity of solutions to second order ODEs to larger
domains (analytic continuation)

∗ tools for solving 2-D PDEs such as Laplace’s equation:

∂2ψ
∂x2

+
∂2ψ
∂y2

= 0 (1)

∗ evaluation of definite integrals

∗ inversion of integral transforms

∗ connection of physically-related quantities under one formalism — e.g.
dispersion theory

∗ combinatorial manipulation
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2 Functions of a Complex Variable

A complex number has the form z = x + iy where x and y are real, A & W,
Sec. 6.1and i =

√
−1 . Here, x = Re(z) is called the real part, and y = Im(z) is

called the imaginary part. This defines the standard Cartesian coordinate
representation.

• Addition of complex numbers works just as for real numbers:

z1 ± z2 = (x1 ± x2) + i (y1 ± y2) . (2)

For other algebraic operations (and most other purposes), the polar coordi-
nate representation (Argand diagram) is more convenient:

z = x+ i y ≡ r(cos θ+ i sin θ) ⇒ r =
√
x2 + y2 , θ = arctan

(
y
x

)
.

(3)

Plot: Polar Coordinate/Argand Diagram Geometry

∗ Note that θ is multi-valued unless we restrict it to an inverval of length
2π (e.g. [0, 2π] ).

∗ The polar coordinate r = |z| is called the magnitude or modulus of
z , and θ is referred to as the argument or phase of z .

• Defining the complex conjugate z∗ = x − iy of z , then the square of
the magnitude of z is z∗z = x2 + y2 = r2 . The conjugate is useful in a
multiplicative role in rendering complex denominators in real form.

• For further convenience, we state Euler’s formula

cos θ + i sin θ = ei θ , (4)

which can serve as the definition of the exponential function (when the θ
domain is extended to the entire complex plane). It can be proved using
Taylor series expansions, once these have been defined for complex numbers.
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Argand Diagram �
in Complex Plane


Diagram courtesy of  Wikimedia Commons
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• The polar coordinate form facilitates multiplication, division and inversion:

Multiplication: z1 ∗ z2 = r1r2 e
i (θ1+θ2)

Division: z1/z2 = (r1/r2) ei (θ1−θ2) [r2 = |z2| 6= 0] (5)

Raising to a power: zα = rα ei αθ .

here, α is not necessarily an integer, and can even be a complex number.

• If we raise the Euler formula to the nth power, where n is an integer, we
recover de Moivre’s formula

cosnθ + i sinnθ = (cos θ + i sin θ)n , (6)

which generates a host of well-known trigonometric identities in compact
fashion (usually equating real and imaginary parts).

• Example 1: Consider A/W problem 6.1.8, summation of two trigono-
metric series: let

SR =
∞∑
n=0

pn cosnx , SI =
∞∑
n=0

pn sinnx . (7)

Then form

S = SR + i SI =
∞∑
n=0

pn ei nx =
∞∑
n=0

(
p ei x

)n
=

1
1− p eix , (8)

a geometric series summation that is valid iff |p eix| ≡ |p| < 1 . Since p e−ix

is the conjugate of p eix , it follows that

S =
1− p e−ix

1 + p2 − p (eix + e−ix)
=

(1− p cosx) + i p sinx
1− 2p cosx+ p2 . (9)

Isolating the real and imaginary parts generates the required identities:

SR =
1− p cosx

1− 2p cosx+ p2 , SI =
p sinx

1− 2p cosx+ p2 . (10)

Eq. (7) constitutes Fourier series expansions for these functions.
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2.1 Complex Functions of a Complex Variable

Complex functions generally can be written in the form

w(z) = u(x, y) + i v(x, y) , (11)

implying two separate functions (u, v) of the two real variables (x, y) . The
problem of graphical representation is usually solved by “mapping” points
and curves from the z = x+ i y to the w = u+ i v plane.

• Simple examples of mappings are addition (= translation), multiplication A & W,
Sec. 6.7(= scaling + rotation), and inversion (= inversion + reflection).

Plot: Mappings of Addition, Multiplication and Inversion

∗ Observe that among these, only addition preserves the shapes of curves.

• A more involved example is provided by w = z2 = r2e2iθ ; it maps the
upper half z plane onto the entire w plane (as does the lower half z plane).

∗ The semi-circle with center at the origin maps onto a full circle centered
at the origin. However, straight lines x = c map over to hyperbolae, and
select hyperbolae map over to straight lines in the w plane:

Plot: Mappings for w = z2

• The inverse mapping w =
√
z therefore possesses a multi-valued problem,

which is solved by defining branches of the square-root function:

w1(z) =
√
r ei θ/2 and w2(z) =

√
r ei (θ+2π)/2 . (12)

This splits the z plane into two Riemann sheets, one for each branch. The
sheets are joined at a branch line (or branch cut) extending from z = 0 to
z =∞ in any direction (though often along the positive real axis).

• Similarly, w(z) = z1/n is n -fold multi-valued for integer n . In this case,
one defines a principal branch w(z) = r1/nei θ/n as a single-valued function.

• Likewise, loge(z) = loge r+ i (θ+ 2nπ) is infinitely multi-valued. Defining
a principal branch loge(z) = loge r + i θ on 0 ≤ θ ≤ 2π , it is single-valued.
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Complex Plane Mapping w=z2
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Figure 6.20 Mapping-hyperbolic coordinates.From Mathews & Walker: Mathematical Methods of  Physics





