Cell Viability Assays:
Microtitration (MTT) Viability Test
Live/Dead Fluorescence Assay

Proliferation Assay:
Anti-PCNA Staining

Spring 2008
Objectives

- To determine the viability of cells under different conditions
- To develop a relationship between absorbance and concentration of metabolically active cells
- To track live and dead cells with different chemicals
- To assess the impact of toxins on cell viability
- To determine the connection between cell cycle proliferation and media conditions
Experimental Methods: MTT assay

- Prepared two plates with different dilutions for:
 1. Cells Treated with MTT Dye
 2. Cells Counted on Coulter Counter
- Dilutions included: (1:1, 1:1.5, 1:2, 1:3, 1:6, 1:12, and control).
- Plates placed in incubator for 2 nights.
- Plate 1:
 - Added MTT dye to each well; incubated for 2 hrs.
 - Added Solubilization/Stop solution to each well; left for 45 min.
 - Measured absorbance at 570 nm on Genesys 10 UV Spectrophotometer.
- Plate 2:
 - Measured cell concentration on Coulter Counter by trypsinizing cells.
MTT Assay:
Linear relationship between Absorbance and Concentration.

\[y = 9 \times 10^{-6}x + 0.003 \]

\[R^2 = 0.9952 \]
Results: MTT Assay

- Graph shows how concentration and absorbance are linearly related.
- As the concentration determined by the Coulter Counter increases, the absorbance indicative of the metabolic activity increases proportionately.
- Discrepancies can be accounted for by the fact that the MTT dye (trerazolium) is only reduced by live cells, while the Coulter Counter does not address viability.
Experimental Methods: Live-Dead Assay

- Seeded 1:3 diluted cells into 9 wells (3 wells/condition)
- Placed in incubator for 2 nights.
- Added the following for condition A, B, C:
 - Condition A: 250 µL PBS, 100 µL dye
 - Condition B: 250 µL ethanol, 100 µL dye
 - Condition C: 250 µL PBS, 2 drop of ethanol, 100 µL dye
- Incubated 30 min. at room temperature
- Observed cells under Nikon Fluorescent Microscope through TRITC and FITC filters.
Results: Live/Dead Assay*

<table>
<thead>
<tr>
<th>Condition</th>
<th>Observations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-Cells fluoresce green (indicative of live cells)</td>
</tr>
<tr>
<td></td>
<td>-70% are elongated with pseudopodia extended</td>
</tr>
<tr>
<td></td>
<td>-Cells in clusters throughout well</td>
</tr>
<tr>
<td>B</td>
<td>-Cells fluoresce red (indicative of dead cells)</td>
</tr>
<tr>
<td></td>
<td>-Nuclei are brighter</td>
</tr>
<tr>
<td></td>
<td>-Cell morphology same as condition A</td>
</tr>
<tr>
<td>C</td>
<td>-patches/clusters of both green and red</td>
</tr>
<tr>
<td></td>
<td>-30% green, 70% red</td>
</tr>
<tr>
<td></td>
<td>-Cell morphology same as condition A</td>
</tr>
</tbody>
</table>
Compare/Contrast results

- Both assays are indicative of live cells
- Both use a dye that undergoes a reaction in the presence of live cells
- Both showed that it is difficult to distinguish between live and dead cells (morphology is often the same, cannot distinguish on light microscope).
- MTT is more quantitative, while the Live/Dead assay is more qualitative
- Live/Dead showed that ethanol is toxic to cells, resulting in cell death.
Experimental Methods: Anti-PCNA Staining

- Seeded cells at different conditions:
 - 1%, 5%, and 10% serum
 - 3 controls at 10% serum
- Incubated for 2 days
- Followed standard staining procedure with Anti-PCNA primary antibody
- Viewed cells using light microscope
Results: PCNA

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% serum</td>
<td>- Cytoplasm is stained blue (for all conditions)</td>
</tr>
<tr>
<td></td>
<td>- 60% of cells have red nuclei</td>
</tr>
<tr>
<td></td>
<td>- 50% confluency</td>
</tr>
<tr>
<td></td>
<td>- Cells are elongated and robust</td>
</tr>
<tr>
<td>5% serum</td>
<td>- 30% of cells have red nuclei</td>
</tr>
<tr>
<td></td>
<td>- 40% confluency</td>
</tr>
<tr>
<td></td>
<td>- Cell morphology same as 10%</td>
</tr>
<tr>
<td>1% serum</td>
<td>- 20% of cells have red nuclei</td>
</tr>
<tr>
<td></td>
<td>- 20% confluency</td>
</tr>
<tr>
<td></td>
<td>- Cell morphology same as 5 and 10%</td>
</tr>
<tr>
<td>controls</td>
<td>- All nuclei are blue</td>
</tr>
<tr>
<td></td>
<td>- 60% confluency</td>
</tr>
<tr>
<td></td>
<td>- Cells are elongated and healthy</td>
</tr>
</tbody>
</table>
Results: PCNA

- Uses Proliferating Cell Nuclear Antigen that is indicative of cells in S-phase.
- When cell nuclei are red, the cell is replicating its DNA.
- The higher the % serum, the higher the % of cells in S-phase.
- Thus, higher serum levels have higher cell cycle proliferation (up to 10%).
Conclusions

- MTT is indicative of metabolism and thus is a viable assay (can develop relationship between absorbance and concentration)
- Live/Dead assay distinguishes live and dead cells through staining (can see the effect of toxins on cells)
- Anti-PCNA stain is indicative of cell cycle proliferation by labeling cells in S-phase

*I compared my results to XXX’s results.