TEAM TEST
2006 RICE MATH TOURNAMENT
FEBRUARY 25, 2006

1. Given \(\triangle ABC \), where \(A \) is at \((0,0)\), \(B \) is at \((20,0)\), and \(C \) is on the positive \(y \)-axis. Cone \(M \) is formed when \(\triangle ABC \) is rotated about the \(x \)-axis, and cone \(N \) is formed when \(\triangle ABC \) is rotated about the \(y \)-axis. If the volume of cone \(M \) minus the volume of cone \(N \) is \(140\pi \), find the length of \(BC \).

2. In a given sequence \(\{S_1, S_2, \ldots, S_k\} \), for terms \(n \geq 3, S_n = \sum_{i=1}^{n-1} i \cdot S_{n-i} \). For example, if the first two elements are 2 and 3, respectively, the third entry would be \(1 \cdot 3 + 2 \cdot 2 = 7 \), and the fourth would be \(1 \cdot 7 + 2 \cdot 3 + 3 \cdot 2 = 19 \), and so on. Given that a sequence of integers having this form starts with 2, and the 7th element is 68, what is the second element?

3. A triangle has altitudes of lengths 5 and 7. What is the maximum possible integer length of the third altitude? (We restricted the third altitude to integer lengths after the contest)

4. Let \(x + y = a \) and \(xy = b \). The expression \(x^6 + y^6 \) can be written as a polynomial in terms of \(a \) and \(b \). What is this polynomial?

5. There exist two positive numbers \(x \) such that \(\sin(\arccos(\tan(\arcsin x))) = x \). Find the product of the two possible \(x \).

6. The expression \(16^n + 4^n + 1 \) is equivalent to the expression \((2^p(n) - 1)/(2^q(n) - 1) \) for all positive integers \(n > 1 \) where \(p(n) \) and \(q(n) \) are functions and \(\frac{p(n)}{q(n)} \) is constant. Find \(p(2006) - q(2006) \).

7. Let \(S \) be the set of all 3-tuples \((a,b,c)\) that satisfy \(a + b + c = 3000 \) and \(a, b, c > 0 \). If one of these 3-tuples is chosen at random, what’s the probability that \(a, b, \) or \(c \) is greater than or equal to 2,500?

8. Evaluate: \(\lim_{n \to \infty} \sum_{k=n^2}^{(n+1)^2} \frac{1}{\sqrt{k}} \).

9. \(\triangle ABC \) has \(AB = AC \). Points \(M \) and \(N \) are midpoints of \(\overline{AB} \) and \(\overline{AC} \), respectively. The medians \(\overline{MC} \) and \(\overline{NB} \) intersect at a right angle. Find \(\left(\frac{AB}{MC} \right)^2 \).

10. Find the smallest integer \(m > 8 \) for which there are at least eleven even and eleven odd positive integers \(n \) so that \(n^3 + m \) is an integer. (We restricted the solution to \(m > 8 \) after the contest since \(m = 8 \) is a trivial solution, with \(n^3 + 8 \) divisible by \(n + 2 \)).

11. Polynomial \(P(x) = c_{2006}x^{2006} + c_{2005}x^{2005} + \ldots + c_1x + c_0 \) has roots \(r_1, r_2, \ldots, r_{2006} \). The coefficients satisfy \(2i \cdot \frac{c_i}{c_{2006-i}} \) for all pairs of integers \(0 \leq i, j \leq 2006 \). Given that \(\sum_{i=1}^{2006} \frac{c_i}{r_j} = 42 \), determine \(\sum_{i=1}^{2006} (r_1 + r_2 + \ldots + r_{2006}) \).

12. Find the total number of \(k \)-tuples \((n_1, n_2, \ldots, n_k)\) of positive integers so that \(n_{i+1} \geq n_i \) for each \(i \), and \(k \) regular polygons with numbers of sides \(n_1, n_2, \ldots, n_k \) respectively will fit into a tesselation at a point. That is, the sum of one interior angle from each of the polygons is \(360^\circ \).

13. A ray is drawn from the origin tangent to the graph of the upper part of the hyperbola \(y^2 = x^2 - x + 1 \) in the first quadrant. This ray makes an angle of \(\theta \) with the positive \(x \)-axis. Compute \(\cos \theta \).

14. Find the smallest nonnegative integer \(n \) for which \(\binom{2006}{n} \) is divisible by \(7^3 \).
15. Let \(c_i \) denote the \(i \)th composite integer so that \(\{c_i\} = 4, 6, 8, 9, \ldots \). Compute

\[
\prod_{i=1}^{\infty} \frac{c_i^2}{c_i^2 - 1}.
\]

(Hint: \(\sum_{i=1}^{n} \frac{1}{n^2} = \frac{\pi^2}{6} \)).