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Abstract

We examine how volatility risk, both at the aggregate market and individual stock level, is

priced in the cross-section of expected stock returns. We estimate a significantly negative cross-

sectional price of risk for systematic volatility, with a cross-sectional volatility factor earning

-0.87% per month. We find that stocks with high idiosyncratic volatility earn abysmally low

returns. The quintile portfolio with the highest idiosyncratic volatility does not even earn an

average positive total return, and the difference in Fama-French (1993) alpha’s between quintile

portfolios with the lowest and highest idiosyncratic risk is -1.31% per month. We find that

the low returns earned by stocks with high exposure to systematic volatility risk and the low

returns of stocks with high idiosyncratic volatility are not priced by the standard size, value or

momentum factors and are not subsumed by liquidity or volume effects.



1 Introduction

The volatility of stock returns, both at the individual level and at the aggregate level, varies

over time. While there has been extensive study of the relation between aggregate volatility

and expected returns (see, among others, Campbell and Hentschel, 1992; Glosten, Jagannathan

and Runkle, 1993; Scruggs, 1998; Goyal and Santa-Clara, 2003), the question of how volatility

affects the cross-section of expected stock returns has received little attention.

We provide a systematic study of how stochastic volatility is priced in the cross-section of

expected stock returns. Our goals are twofold. First, we cross-sectionally estimate a price of risk

for aggregate market volatility. If the volatility of the market return is a systematic risk factor, an

APT or factor model indicates that aggregate volatility should also be priced in the cross-section

of stocks. We find that innovations to aggregate volatility have a statistically significant negative

price of risk. Economically, a negative premium for systematic volatility risk implies that assets

with positive exposures to aggregate volatility risk pay off in times when market returns are

low. Since equity prices react negatively to positive shocks in aggregate volatility, investors are

willing to pay premiums to hold assets with high exposure to systematic volatility risk. Hence,

assets with high sensitivities to fluctuations in aggregate volatility earn low returns. Our findings

are consistent with many option pricing studies that have also documented negative prices of

aggregate volatility risk.1 However, all of these option pricing studies estimate the price of

aggregate volatility risk using, at most, only the time-series and a cross-section of options on an

aggregate market index, in addition to returns on the market portfolio.

There are several advantages of using a cross-section of returns on stocks, rather than a

cross-section of options on the market, to estimate the price of risk of aggregate volatility. First,

using the cross-section of returns allows us to create a useful hedging, or mimicking factor

portfolio for aggregate volatility risk. If the price of volatility risk is negative, the zero-cost

hedge portfolio will have average returns that are consistently negative. The portfolio is easy to

construct and reflects only exposure to innovations in aggregate volatility. The second reason

for using the cross-section of stock returns is to gauge the strength of exposure to volatility

risk in individual stocks or portfolios. This approach creates a new set of assets with exposure

to volatility risk that are not options. Hence, performing tests on this new set of assets with

exposure to volatility innovations complements and confirms the findings of the option pricing

1 See, for example, Jackwerth and Rubinstein (1996), Bakshi, Cao and Chen (2000), Chernov and Ghysels

(2000), Burashi and Jackwerth (2001), Coval and Shumway (2001), Benzoni (2002), Jones (2002), Pan (2002),

Bakshi and Kapadia (2003) and Eraker, Johannes and Polson (2003).

1



studies. Finally, using the cross-section allows us to estimate the price of volatility risk control-

ling for other standard cross-sectional effects, such as the size and value effects of Fama and

French (1993), the momentum effect of Jegadeesh and Titman (1993), and the liquidity effect

of Pástor and Stambaugh (2003). Estimating volatility risk controlling for other cross-sectional

factors cannot be done using only a cross-section of options on the market portfolio.

We find strong evidence that systematic volatility risk is priced in the cross-section of stocks.

The difference in average returns between the highest and lowest quintile portfolios sorted by

exposure to volatility innovations is -1.04% per month, and is still statistically significant at

-0.83% per month controlling for the Fama and French (1993) factors. The cross-sectional

volatility risk effect is robust to liquidity effects and is not priced by a momentum factor. We

find that our mimicking factor created to represent exposure to systematic volatility risk is sig-

nificantly priced in the cross-section of stock returns.

A second related goal of this paper is to examine patterns in cross-sectional expected returns

of portfolios formed by ranking on idiosyncratic volatility, measured relative to standard models

of systematic risk. In contrast, recent studies focus only on the average level of firm-level

volatility. For example, Campbell et al. (2001) and Xu and Malkiel (2001) document that

idiosyncratic volatility, relative to the market or to the Fama-French (1993) three-factor model,

has increased over time. Goyal and Santa-Clara (2003) demonstrate that idiosyncratic risk has

positive predictive power for excess market returns. In contrast, we focus on how idiosyncratic

risk is cross-sectionally reflected in expected returns.

Standard asset pricing models predict that idiosyncratic volatility is not priced and thus can-

not influence cross-sectional average returns. However, recent economic theory indicates that

idiosyncratic risk may be positively related to expected returns, if investors demand compensa-

tion for not being able to diversify risk (see Malkiel and Xu, 2002; Jones and Rhodes-Kropf,

2003). Merton (1987) suggests that in an information-segmented market, firms with larger

firm-specific variance require higher returns to compensate for imperfect diversification. Re-

cent behavioral models, like Barberis and Huang (2001) also predict that higher idiosyncratic

volatility stocks should earn higher expected returns. Our results are directly opposite to these

theories. We find that stocks with low idiosyncratic risk deliver high average returns. There is a

strongly significant pattern of over -1.06% per month in the average return difference between

quintile portfolios of lowest and highest idiosyncratic risk, computing idiosyncratic volatility

relative to the Fama-French (1993) model.

Our findings are totally the opposite of Tinic and West (1986) and Malkiel and Xu (2002).
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These authors find that portfolios with higher idiosyncratic risk have higher average returns.

However, they do not directly sort stocks based on the measure of interest, idiosyncratic volatil-

ity, nor do they tabulate any significance levels for their idiosyncratic volatility premiums. In-

stead, Tinic and West (1986) work only with 20 portfolios sorted on market beta, while Malkiel

and Xu work only with 100 portfolios sorted on market beta and size.2 Hence, Tinic and West

and Malkiel and Xu miss the strong negative relation between idiosyncratic volatility and ex-

pected returns.

The very low returns we find for high idiosyncratic volatility represent somewhat of a puz-

zle. We outline some potential explanations and investigate if they can explain these puzzling

results. Our results are robust to controlling for value, size, liquidity, volume, dispersion of

analysts’ forecasts, and momentum effects. In particular, we find that the effect is common

to stocks of all sizes, but is strongest among middle-sized, not the smallest-sized, stocks. The

effect persists in both bull and bear markets, recessions and expansions, and volatile and stable

periods. Moreover, we find the effect robust to different formation periods for computing id-

iosyncratic volatility and for different holding periods. We also find that the portfolios sorted

by idiosyncratic volatility have little exposure to systematic volatility risk.

The rest of this paper is organized as follows. In Section 2, we examine how systematic

volatility is priced in the cross-section of stock returns. Section 3 documents that firms with

high idiosyncratic volatility have very low average returns. Finally, Section 4 concludes.

2 Pricing Systematic Volatility in the Cross-Section

2.1 A Simple Model

To motivate the empirical analysis that follows, we start by presenting a model to illustrate how

stochastic volatility might affect the cross-section of equity returns. This simple model is not

intended to provide a complete structural explanation of how aggregate volatility is priced by

agents in the cross-section. Rather, we use the simple model as motivation to illustrate how

stochastic market volatility implies cross-sectional differences in expected returns.

2 Malkiel and Xu (2002) do consider a cross-sectional regression on individual stocks, but instead of using a

measure of an individual stock’s idiosyncratic volatility, they assign a stock’s residual standard deviation to be the

idiosyncratic risk of one of the 100 beta/size portfolios to which that stock belongs each month.
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Consider a two-factor model that allows the market volatility to be stochastic:

dSm
t

Sm
t

= µm
t dt + σm

t dWt

dσm
t = am

t dt + bm
t dVt (1)

wheredSm
t /Sm

t represents the aggregate market return andσm
t represents the aggregate market

volatility. We assume that the two Weiner processesdWt anddVt are correlated,dWtdVt = ρdt.

The formulation of the drift and volatility ofσm
t can be very general. For example, we can

specifyσm
t to be mean-reverting if we setam

t = κ(θ − σm
t ) andbm

t = b. In order to derive

closed-form option pricing models, a common specification is to modeld(σm
t )2 as a square-

root process, as in Heston (1993). Since our focus is not on deriving a closed-form option

pricing model, we can allowam
t andbm

t to take very general forms. Similarly, we do not take

a stand on the functional form of the drift of the market returnµm
t as our focus is on deriving

cross-sectional, rather than aggregate, pricing implications.

Suppose markets are complete and the pricing kernelm takes the form:

dmt

mt

= −rfdt− ηm
t dWt − ηv

t dVt, (2)

where we have assumed a constant risk-free raterf without loss of generality. To model an

individual stock, we set the return on stocki, dSi
t/S

i
t to also follow a two-factor model:

dSi
t

Si
t

= µi
tdt + σi

tdW i

dσi
t = ai

tdt + bi
tdV i (3)

wheredWdW i = ρmidt and dV dW i = ρvidt. The drift ai
t and volatility bi

t functions can

be functions of stocki’s volatility σi
t. In equation (3), shocks to a stock’s own volatility are

correlated with shocks to the stochastic volatility factor in the pricing kernel (2). This implies

that a stock’s volatility exposure to systematic volatility plays a part in determining that stock’s

expected return.3

By definition of the pricing kernel, the drift term ofd(mSi
t) must be zero, therefore, Ito’s

lemma gives the following relation:

µi
t − rf

σi
t

= ηw
t ρmi + ηv

t ρvi, (4)

3 A related specification of (1) to (3) is Brennan, Wang and Xia (2002), who specify the Sharpe ratio of the

market,ηm
t , to assume its own Ornstein-Uhlenbeck process.
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In the case of asset returns that can proxy fordSm
t /St anddσm

t , then:4

ηw
t + ηv

t ρ =
µm

t − rf

σm
t

ηw
t ρ + ηv

t =
am

t − σm
t rf

bm
t

. (5)

Substituting into equation (4), we obtain:

µi
t − rf

σi
t

=
1

(ρ2 − 1)

(
am

t − σm
t rf

bm
t

ρ− µm
t − rf

σm
t

)
ρmi

+
1

(ρ2 − 1)

(
µm

t − rf

σm
t

ρ− am
t − σm

t r

bm
t

)
ρvi. (6)

This can be re-written as:

µi
t − rf = βm

it (µm
t − rf ) + βv

it(a
m
t − σm

t rf ), (7)

where

βm
it =

ρ− ρmi

ρ2 − 1

σi
t

σm
t

and βv
it =

ρ− ρvi

ρ2 − 1

σi
t

bm
t

.

We can interpretβm
it to be the multivariate beta of stocki, measuring exposure to fluctuations

in the market shockdWt. Similarly, βv
it measures exposure of stocki to innovations in the

market volatilitydVt. Note that expected returns depend on the sensitivity to innovations, not

the sensitivity to the level of either the market or volatility per se.5

In our empirical work, we examine if there is any relationship between a stock’s exposure

to innovations in systematic volatility, as in equation (7). Note that in deriving equation (7),

we assume that market volatility is a traded asset, allowing us to specify the price of risk of

volatility. In our empirical work, we use several proxies to measure innovations in volatility.

Equation (7) implies that stocks with different exposures to innovations in volatility, through

different βv
it coefficients, have different expected excess returns. We will build a mimicking

factor for volatility risk to estimate its risk premium. A further goal is to control not only for

the effect of the market but also control for other known cross-sectional factors (for example,

the Fama and French, 1993, value and size factors).

Equation (7) is in the standard form of an APT or factor model (see Ross, 1976), so that

market volatility risk, throughβv
it, is explicitly priced in the cross-section of stock returns. The

4 For at-the-money options, very short holding period returns are approximately linear functions of changes in

implied volatility.
5 If we assume that volatility risk is not priced (ηv

t = 0), then equation (7) simplifies to the traditional CAPM

µi
t − rf = βm

it (µm
t − rf ).
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model is also in the spirit of a Merton (1973) Intertemporal CAPM (I-CAPM). Since market

volatility affects the dynamics of the market return in equation (1), systematic volatility has im-

plications for asset prices in the cross-section, as in equation (7).6 An I-CAPM model implies

joint time-series as well as cross-sectional predictability. The goal in our empirical work is to

only examine the cross-sectional pricing implications of equation (7) directly. We do not exam-

ine joint time-series and cross-sectional predictability of asset returns by systematic volatility

because we do not take a stand on the utility function of a representative agent or parameterize

the time-series process of volatility.

2.2 Estimating Aggregate Volatility

We proxy systematic (market-wide) volatility using three estimators. The first estimator is

the standard French, Schwert and Stambaugh (1987) and Schwert and Seguin (1990) measure,

which is the sum of squared daily returns over the pastNt days, adjusted for first-order autocor-

relations:7

σ̂2
t =

1

Nt

[
Nt−1∑
i=0

r2
t−i + 2

Nt∑
i=1

rtrt−i

]
, (8)

wherert is the return on the market portfolio. We denote the volatility measureσ̂t in (8) by

SV OL (sample volatility) and computeSV OL using daily returns on the market index from

CRSP. We computeSV OL at a daily frequency by using the lastNt = 22 trading days. The use

of past daily data over the previous month to estimate volatility at timet means that theSV OL

estimates do not reflect the true market volatility att, rather they represent an average of the

daily volatility from montht− 1 to montht. Nevertheless,SV OL should pick up broad trends

in true volatility movements.

Our second proxy for market volatility is a range-based estimate, following Alizadeh, Brandt

and Diebold (2002):

σ̂t = log

(
sup

0<τ≤1
Sτ

/
inf

0<τ≤1
Sτ

)
, (9)

whereSτ is the level of the S&P500 index over dayt. We denote this range-based estimate for

aggregate volatility asRV OL. While easy to compute,RV OL suffers from several drawbacks.

First,RV OL is biased downwards because the range on a discrete grid of prices is always less

6 For example, Chen (2002) extends Campbell’s (1993 and 1996) log-linear approximation of Merton (1973), by

allowing for time-varying covariances and stochastic market volatility. Chen shows that any variable that forecasts

future market returns or future market variances must be priced cross-sectionally.
7 Our results are unchanged if we omit the autocorrelation terms, as in Schwert (1989).
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than the range of a true continuous sample path. Second, the use of equation (9) assumes that

the volatility of the market is constant each day, but changes from day to day. Third, the log

range estimator relies on the assumption that a log volatility process is a good approximation

for the underlying true volatility process. Finally, even if the true volatility process follows a log

process, Andersen and Bollerslev (1998) and Alizadeh, Brandt and Diebold (2002) show that

the efficiency ofRV OL is similar to the efficiency of estimates which use intra-day realized

volatility forecasts of 4-6 hour windows, which provide at most two observations per trading

day. SinceSV OL uses only one observation per trading day, theRV OL measure should be

better than, but may not be a substantial improvement on, usingSV OL.

Our last proxy for volatility is theV IX index, which is a Black-Scholes (1973) implied

volatility index constructed by the Chicago Board of Exchange from eight S&P100 index puts

and calls. TheV IX index takes into account the American features of the option contracts,

discrete cash dividends and microstructure frictions such as bid-ask spreads. TheV IX index is

constructed so that it represents the implied volatility on a synthetic at-the-money option con-

tract that has a one month maturity. Whaley (2000) provides further details on the construction

of theV IX index.

At first glance, sinceV IX is representative of traded option securities whose prices directly

reflect volatility risk,V IX might seem to be the most natural measure of changes in aggre-

gate volatility. However, there are three main caveats with usingV IX to represent observable

market volatility. First, theV IX index is Black-Scholes implied volatility, rather than the

true unobservable volatility process. However, we would expect that Black-Scholes volatilities

would be highly correlated with the true volatility process. The second caveat is thatV IX may

also reflect an interaction of a jump and a diffusion (see Eraker, Johannes and Polson, 2003).

However, Bates (1991 and 2000) argues that implied volatilities computed taking into account

jump risk are very close to Black-Scholes implied volatilities.

The third, but most serious, reservation about theV IX index is thatV IX combines both

stochastic volatility itself and the stochastic volatility risk premium. Only if the risk premium is

zero or constant would∆V IX represent only an innovation in volatility. Decomposing∆V IX

into the true innovation in volatility and the risk premium can only be done by writing down a

formal model. The form of the risk premium depends on the parameterization of the volatility

price of risk, the number of factors and the evolution of those factors. Each different model

specification implies a different risk premium. For example, many stochastic volatility option

pricing models parameterize the volatility risk premium to be a linear function of volatility

7



(see, for example, Chernov and Ghysels, 2000; Benzoni, 2002; Jones, 2002; Pan, 2002). Rather

than imposing a structural form, we use an unadulteratedV IX series. This has the additional

advantage that our analysis is simple to replicate.

Other common methods of estimating volatility include GARCH-based models and methods

based on intra-day, or high frequency, data (see, for example, Andersen et al., 2003). We do not

use a GARCH model because the parameters of the GARCH process must be estimated before

computing the implied innovations in the variances. Hence, this method entails a look-ahead

bias if the full sample is used. When we form portfolios, it is important that we form portfolios

only using only data available as of the formation date. If a rolling GARCH estimator is used

to avoid look-ahead bias, the time-periods near the beginning of the sample suffer from very

poor estimates of the GARCH process. While Andersen et al. (2003) formally justify the use of

the realized sample volatility measured with intra-day data as a highly efficient volatility proxy,

intra-day data on market returns are not readily available, making this estimation method hard

to implement. In particular, intra-day data are collected only for individual stocks and the main

source of these data, the TAQ database, starts only in 1993.

We concentrate on using the sample period from January 1986 to December 2000. This is

because the data for theV IX series begins in January 1986, and we would like to compare all

our series on a common sample period. Nevertheless, we also comment on the sample period

July 1963 to December 2000 forSV OL andRV OL.

Table 1 presents some summary statistics forSV OL, RV OL andV IX at a daily frequency.

The annualized mean ofSV OL (RV OL) is 0.0099×√250 = 16%, (0.0120×√250 = 19%).

The mean ofV IX is higher than both these two measures, at 21%. The higher average of

V IX volatility indicates that it is a biased forecast of realized future volatility. The bias may

reflect a risk premium for stochastic volatility, a market inefficiency or a Peso-problem.8 The

annualized standard deviations ofSV OL, andV IX are approximately equal, at 9% and 8%,

but the annualized standard deviation ofRV OL is higher, at 14%. All three series are negatively

correlated with the market return, withRV OL (V IX) having a -23% (-18%) correlation. The

correlation ofSV OL with the market is noticeably less, at only -4%. The low correlation of

SV OL is due to the fact that a large negative movement in returns has only a 1/22th weight

in the computation ofSV OL from equation (8), whereas the increase in volatility is reflected

more immediately byRV OL andV IX.

8 See, among many others, Day and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes

(1993), Blair, Poon and Taylor (2001), Poteshman (2000) and Chernov (2002).
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We graph the three volatility measures in Figure 1, which annualizes each volatility measure

so that they are comparable. Overall, all three measures share the same trends. In particular,

each series has two noticeable spikes. The first spike shows the increase in implied volatili-

ties after the 1987 crash, and the second spike occurs in 1998 during the Russian default, the

emerging markets crises, and the bailout of Long Term Capital Management. Figure 1 shows

that whileSV OL andV IX are fairly smooth series (autocorrelations of 98% and 94%, respec-

tively at at a daily frequency), theRV OL measure is much less smooth (the daily autocorrela-

tion of RV OL is 49%). The more volatile range-based measure also magnifies the movements

in volatility measured bySV OL andV IX.

To measure daily innovations in aggregate volatility, we compute daily changes inSV OL,

daily changes inRV OL or daily changes inV IX. We denote these measures as∆SV OL,

∆RV OL or ∆V IX, respectively. From equation (8) (and ignoring the autocorrelation term),

∆SV OL effectively takes the difference between the squared market return att and the squared

market return 22 trading days prior to timet. Hence, the time-series of daily∆SV OL effec-

tively measures monthly innovations in volatility at timet. In contrast,∆RV OL and∆V IX

reflect daily changes in volatility movements and may be better estimates of changes in true

market volatility. In particular,∆V IX reflects a daily change in implied option volatilities.

Nevertheless,∆SV OL, ∆RV OL and∆V IX are all quite highly correlated with each other.

For example, Table 1 reports that the correlation of∆V IX with ∆SV OL (∆RV OL) is 45%

(39%).

In Table 1, all the estimates for daily innovations in volatility have strong negative corre-

lations with the market return. The correlations with the market and∆SV OL, ∆RV OL and

∆V IX are -25%, -26% and -64%, respectively. Hence, when a positive volatility shock arrives,

the market excess return decreases. The best example of this effect is the increase in volatility

over 1987 in Figure 1, coinciding with the large negative returns of the market over this pe-

riod. Table 1 shows one source of discrepancy between∆RV OL and the two other estimators

∆SV OL and∆V IX. While ∆SV OL and∆V IX have very low autocorrelations (7% and

-7%, respectively),∆RV OL has a strong negative autocorrelation of -43%. In fact,RV OL

and∆RV OL also have almost the same standard deviation. This is due to the large movements

in RV OL, which is shown in Figure 1.
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2.3 Portfolios Sorted by Exposure to Systematic Volatility

Equation (7) predicts that firms with different sensitivities (measured by betas) to innovations in

systematic volatility should have different expected excess returns. Based on this implication,

we sort firms into portfolios according to their sensitivities to systematic volatility. If stochas-

tic volatility risk is priced, the average returns on these volatility sensitivity-sorted portfolios

should be different. Our first step is to check that firms with different sensitivities to market

volatility innovations indeed have different average returns.

Equation (7) suggests estimating the sensitivities of stocki to systematic volatility in the

following regressions:

ri
t = αi + βi

MKT ·MKTt + βi
∆SV OL ·∆SV OLt + εi

t

ri
t = αi + βi

MKT ·MKTt + βi
∆RV OL ·∆RV OLt + εi

t

ri
t = αi + βi

MKT ·MKTt + βi
∆V IX ·∆V IXt + εi

t (10)

whereri
t is firm i’s excess return andMKT is the market excess return. Equation (10) proxies

the innovation in market volatility (dVt in equation (1)) by∆SV OL, ∆RV OL, or ∆V IX.

The coefficientsβi
∆SV OL, βi

∆RV OL andβi
∆V IX represent the sensitivity of firmi’s returns to

innovations in market volatility, measured by these proxies. Note that, as equation (7) suggests,

we control for the effect of the market in computing the volatility betas in equation (10).

To form portfolios, we run regression (10) on daily excess returns over the previous month

for each firm with more than 17 daily observations within that month on all stocks on AMEX,

NASDAQ and the NYSE. At the end of each month, we sort the stocks into quintiles, based

on the value of theβ∆SV OL, β∆RV OL or β∆V IX coefficients. Firms in quintile 1 (5) have the

lowest (highest) coefficients. Within each quintile portfolio, we value-weight the stocks. If

volatility risk is priced cross-sectionally, the average returns of these quintile portfolios should

be different.

Table 2 reports various summary statistics for quintile portfolios sorted by exposure to ag-

gregate volatility shocks. If the negative price of systematic volatility risk found by the option

pricing studies is reflected in the cross-section, we should see lower average returns with higher

coefficients ofβi
∆SV OL, βi

∆RV OL or βi
∆V IX . We turn first to the portfolios sorted byβ∆SV OL.

The β∆SV OL portfolios have little differences in spreads or alpha’s, relative to the CAPM or

to the Fama-French (1993) model (FF-3 hereafter), reported in the last two columns. This is

not surprising since we know that∆SV OL is potentially a poor measure for daily changes in

stochastic volatility.
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We next turn to the quintile portfolios sorted byβ∆RV OL. Quintiles 1-4 all have higher aver-

age returns than quintile 5, and the 5-1 spread in average returns between the quintile portfolios

with the lowest and highestβ∆RV OL values is -0.42% per month. When we control for the

Fama-French factors, the 5-1 alpha is -0.39% per month. While the negative point estimates of

the 5-1 spread in average returns or alpha’s are consistent with a negative price of volatility risk,

the spreads are statistically insignificant at the 5% marginal level of significance using robust

Newey-West (1987) t-statistics. The sample period of Table 2 is from January 1986 to Decem-

ber 2000. If we use more data from July 1963 to December 2000, for more power, we still

cannot reject that the 5-1 difference in alphas or expected returns for bothβ∆SV OL andβ∆RV OL

portfolios are equal to zero.

We now turn to our last volatility proxy,∆V IX, which directly reflects the volatility of the

market portfolio priced in option contracts. The average returns of the quintile portfolios are

monotonically decreasing from 1.64% per month for lowβ∆V IX stocks to 0.60% per month for

high β∆V IX stocks. The 5-1 spread in average returns between the quintile portfolios with the

highest and lowestβ∆V IX coefficients is -1.04% per month. This dramatic spread in average

returns does not seem to be due to patterns in size or book-to-market characteristics. In the two

last columns of Table 2, we compute alpha’s relative to the CAPM and FF-3. Controlling for

the MKT factor only exacerbates the 5-1 spread (from -1.04% to -1.15% per month), while

controlling for the FF-3 model decreases the 5-1 spread to -0.83% per month. Both the CAPM

and FF-3 alpha’s are significant at the 1% level using robust t-statistics.

One curious pattern about the average returns and the alpha’s for theβ∆V IX quintile port-

folios is that the average returns and alpha’s for quintiles 1-4 are approximately the same, with

a slight downward trend. However, there is a dramatic fall in the average return and alpha for

quintile 5. This implies that while there is a monotonic relation between increasingβ∆V IX load-

ings and decreasing average returns and alpha’s, the biggest effect is for stocks with the highest

values ofβ∆V IX , which have extremely low returns or alpha’s. This category of stocks is not a

small proportion of the market: the percentage market capitalization of quintile 5 is 7.4%. Quin-

tile 5 portfolio’s turnover is also not substantially higher than the other portfolios; its average

turnover is 73%, of the same order of magnitude as decile portfolios sorted on book-to-market

ratios.

The results of the sorts onβ∆V IX confirm the negative price of volatility risk estimated by

option pricing studies. The higher theβ∆V IX coefficient, the higher is the exposure of a stock

to systematic volatility risk. Since stocks with higherβ∆V IX loadings have lower expected
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returns, this is consistent with stochastic volatility carrying a negative risk premium. However,

before we construct a mimicking factor for cross-sectional volatility risk, we first ensure that

theβ∆V IX effect is robust to other known factors that affect the cross-section of average returns.

The FF-3 alpha’s in Table 2 show that the very large spread in average returns between

the highest and lowestβ∆V IX quintiles is not due to size or book-to-market effects. However,

periods of very high volatility tend to coincide with periods of market illiquidity. Chordia et

al. (2001), Jones (2002) and Pástor and Stambaugh (2003) all comment that such periods often

coincide with market downturns. For example, during the 1987 crash and the 1998 Russian debt

and subsequent emerging markets crises, realized market returns and liquidity were low. Pástor

and Stambaugh demonstrate that stocks with high liquidity betas have high expected returns.

We now check that the spread in average returns reflecting sensitivities to volatility risk is not

due to liquidity effects. Panel A of Table 3 reports the results.

To control for liquidity, we first sort stocks into five quintiles based on their historical liq-

uidity betas,βL, computed following Ṕastor and Stambaugh (2003). Then within each quintile,

we sort stocks into five quintiles based on theirβ∆V IX coefficient loadings. These portfolios are

rebalanced monthly and are value-weighted. After forming the5× 5 liquidity beta andβ∆V IX

portfolios, we average the returns of eachβ∆V IX quintile over the five liquidity beta portfolios.

Thus, these quintileβ∆V IX portfolios control for differences in liquidity.

Table 3, Panel A shows that controlling for liquidity reduces the 5-1 difference in average

returns from -1.04% per month in Table 2 to -0.68% per month. In particular, after controlling

for liquidity, we still observe the monotonically decreasing pattern of average returns of the

β∆V IX quintile portfolios. The liquidity control also does not remove the sharp decrease in the

average return of the fifthβ∆V IX quintile. When we control for the CAPM (FF-3 model), the

alpha becomes -0.73% (-0.55%) per month. Both these alpha’s are significant at the 5% level.

We also observe the same pattern of very low returns for the highestβ∆V IX stocks within each

liquidity beta quintile, before averaging across the liquidity beta portfolios, but do not report

these results to save on space. Hence, liquidity effects cannot account for the spread in returns

resulting from sensitivity to aggregate volatility risk.

Panel B reports the same exercise except we control for volume effects rather than liquidity.

Gervais, Kaniel and Mingelgrin (2001) find that stocks with high trading volume earn higher

average returns than stocks with low trading volume. It could be that the low average returns

(and alpha’s) we find for stocks with highβ∆V IX loadings are just stocks with low volume.

Panel B shows that this is not the case. In Panel B, we control for volume the same way that we

12



control for liquidity in Panel A, except we first sort stocks into quintiles based on their trading

volume (rather than Ṕastor-Stambaugh liquidity betas). Before averaging across the volume

portfolios, we also observe the same pattern of low returns to highβ∆V IX stocks within each

volume quintile (not reported). Hence, the volume effect is also not responsible for the large

spread in average returns and alpha’s between stocks with low and highβ∆V IX sensitivities.

2.4 A Cross-Sectional Volatility Factor

Constructing the V OL Factor

The pricing equation (7) from our simple model motivates a linear factor model for stocki of

the form:

E(ri
t) = αi + βi

MKT · λMKT + βi
∆V IX · λV OL, (11)

whereE(ri
t) is the expected excess return of stocki, λMKT is the market risk premium andλV OL

is a risk premium for the aggregate volatility risk factor. If the model is correctly specified, then

αi should be zero. In this section, we build a mimicking factor for stochastic volatility exposure,

allowing us to cross-sectionally estimate the price of risk for stochastic volatility. The advantage

of constructing a mimicking factor, which we callV OL, rather than just using∆V IX is that

∆V IX does not represent the realized return on a tradable asset. By creating a tradeable factor,

we can interpret alpha’s from standard time-series factor regressions as well as directly estimate

the volatility risk premium cross-sectionally.

Our volatility factor,V OL, is formed as follows. Each month, we rank stocks based on their

β∆V IX coefficients into three groups: low, medium and highβ∆V IX groups with 33.3% and

66.7% cutoffs. We calculate monthly value-weighted returns for each of these three portfolios.

The V OL factor is formed as the return difference between the highβ∆V IX group and the

low β∆V IX group. Hence, theV OL factor goes long stocks with high volatility innovation

sensitivities, which have low expected returns, and shorts stocks with low volatility innovation

sensitivities, which have high expected returns.

Table 4 lists some summary statistics for theV OL factor. TheV OL factor has a monthly

mean return of -0.58% per month, and the mean is statistically significant at the 1% marginal

level of significance. Table 4 also lists the correlation ofV OL with the excess market return

MKT , the Fama and French (1993) size and value factorsSMB andHML, andUMD, a

momentum factor constructed by Kenneth French. The momentum factorUMD is constructed

in a similar way to Carhart (1996)’s momentum factor, which goes long stocks with past high
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returns and shorts stocks with past low returns. The correlation ofV OL with theMKT is 16%,

which is smaller in magnitude than the respective correlations ofSMB, HML andUMD with

MKT over our sample period. The low correlation results from controlling for theMKT

factor in our initial computation ofβ∆V IX in the regression (10). However, ourV OL factor is

relatively highly correlated withSMB, at 48%, andHML at -40%. This is consistent with the

results in Table 2, where the alpha’s from the FF-3 model for the quintileβ∆V IX portfolios are

slightly smaller than the raw average returns.

Table 4 also reports the results of regressingV OL onto various factors in a time-series

regression. Controlling for theMKT factor decreases theα from -0.58% per month to -0.68%

per month. The FF-3 model reduces this magnitude to -0.46% per month. Nevertheless, the

alpha is still significant at the 5% level. When we add theUMD momentum factor, the loading

on UMD is zero, and the point estimate of the alpha is almost unchanged, decreasing by only

1 basis point to -0.47% per month. However, the extra noise added byUMD causes theV OL

alpha to be borderline significant at the 5% level.

In Figure 2, we plot the cumulative returns of theV OL factor from January 1986 to De-

cember 2000. Over the sample, no particular time period drives the significantly negative mean

(-0.58% per month) of theV OL factor. The large increases inV IX after the 1987 crash and

during 1998 do coincide with negative returns of theV OL factor, but these are not unusually

large.

Pricing β∆V IX Sorted Portfolios

As a check on whether theV OL factor captures the return premium between stocks with high

β∆V IX loadings and stocks with lowβ∆V IX loadings, Table 5 examines ifV OL can price the

quintile portfolios sorted onβ∆V IX . The table reports the portfolio alpha’s and the p-value from

a Gibbons-Ross-Shanken (1989) (GRS) joint test that the alpha’s are equal to zero. The alpha’s

from the CAPM and FF-3 model are repeated from the last two columns of Table 2.

Table 5 shows that the standard models, the CAPM, FF-3, and FF-3 augmented with a

UMD momentum factor cannot account for the spread in returns of theβ∆V IX portfolios. For

all these models, we systematically reject the hypothesis that the alpha’s of the portfolios are

jointly equal to zero at a 5% level. In contrast, all the models withV OL pass the GRS test

at a 10% marginal level of significance. The alpha’s of the difference between the highest and

lowestβ∆V IX portfolios are -1.15% per month for the CAPM regression. We can decrease

this magnitude to -40 basis points per month by including theV OL factor. However, the 5-1
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difference is still statistically significant with theV OL factor, despite the failure to reject a GRS

test.

It is instructive to examine the factor loadings in Panel B of Table 5 for the most com-

prehensive factor specification with allMKT , SMB, HML, UMD andV OL factors. The

market loadings, although highly significant, are fairly flat across the portfolios. TheSMB

loadings have a U-shape, picking up the lowest and the highestβ∆V IX portfolios. Similarly,

HML has an inverted U-shape, with lowest loadings on the lowest and highestβ∆V IX portfo-

lios. Hence, neitherSMB nor HML can account for the spread between the 5-1 portfolios.

The point statistics of the momentum factor loadings are almost zero and have no pattern. In

contrast, the loadings onV OL increase monotonically from -0.54 for the lowestβ∆V IX port-

folio to 0.57 to the highestβ∆V IX portfolio. Hence, exposure to theV OL factor accounts for

1.11×−0.58% = −0.64% per month of the raw -1.04% per month average return.V OL is the

only factor whose (increasing) loadings reflect the pattern in (decreasing) returns from low to

highβ∆V IX quintile portfolios.

Fama-MacBeth (1973) Estimates of the Price of Volatility Risk

Equations (7) and (11) of the linear factor model imply a standard cross-sectional regression.

If excess returns of assets are regressed on theβ∆V IX coefficients of those assets, then there

should be a significant coefficient on theβ∆V IX loadings. This coefficient,λV OL, is the price

of risk of stochastic volatility. To estimateλV OL in the cross-section, equations (7) and (11)

suggest the need to create a set of assets whose market betas and∆V IX betas are sufficiently

disperse. We construct 25 portfolios sorted byβMKT andβ∆V IX as follows. At the end of each

month, we sort stocks based onβMKT , computed by a univariate regression of excess stock

returns on excess market returns over the past month using daily data. We compute theβ∆V IX

loadings using the bivariate regression (10) also using daily data over the past month. Stocks

are ranked first into quintiles based onβMKT and then within eachβMKT quintile intoβ∆V IX

quintiles.

Panel A of Table 6 reports FF-3 alpha’s of these 25βMKT × β∆V IX set of portfolios. There

is some heterogeneity in the alpha’s, but the 5-1 difference in theβ∆V IX quintiles are always

negative. For the largerβMKT quintiles 4 and 5, the alpha’s are almost monotonic.9 Across each

βMKT quintile, it is always the fifthβ∆V IX quintile that has the steepest drop in returns. Hence,

this finer sort of stocks based onβMKT andβ∆V IX coefficients has the same qualitative pattern

9 The pattern in the means of raw returns is qualitatively similar to the the pattern of FF-3 alpha’s.
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of alpha’s as the quintileβ∆V IX portfolios in Table 2, which do not control for the market beta.

We use the base assets of Panel A to estimate factor premiums in Panel B, following the

two-step procedure of Fama-MacBeth (1973). In addition to the standard FF-3 andUMD

factors, we include the Ṕastor-Stambaugh (2003) liquidity factor,LIQ. Although theLIQ

factor is non-traded, we can still include it in the cross-sectional regression and examine the

statistical significance of its premium. Panel B shows that the premiums of the standard factors

(MKT , SMB, HML andUMD) are estimated very imprecisely with this set of base assets.

The premium onSMB is consistently estimated to be negative because the size strategy has

performed poorly from the 1980’s onwards. The low and insignificant premiums ofUMD and

LIQ illustrate that the spreads in expected returns of theβ∆V IX portfolios are not related to

momentum or liquidity effects.

WhenV OL is included in the cross-sectional regressions, it is the only factor estimated to

have a significant loading. Its premium of around -0.83% per month is of the same order of

magnitude as the time-series mean ofV OL (-0.58% per month). TheV OL premium is signifi-

cant in all the various specifications of including different factors. The cross-sectionalR2’s also

increase significantly onceV OL is included. For example, theR2 of the FF-3 specification is

50%, and it increases to 67% when theV OL factor is included. Hence, theV OL premium is

robust to size, value, momentum and liquidity effects. We consider theV OL factor to be a new

cross-sectional factor representing systematic volatility risk.

The V OL Factor and Option Returns

The V OL factor reflects exposure to systematic volatility risk and is constructed using the

cross-section of stock returns. An alternative way to construct a traded asset reflecting volatility

risk is to consider option returns. To construct a mimicking factor for systematic volatility risk

from cross-sectional options is infeasible because of low liquidity and large bid-ask spreads.

However, it is possible to construct a zero-delta straddle position in options on the aggregate

market (S&P 100 options) which has zero market exposure but provides exposure to systematic

volatility. This is precisely what Coval and Shumway (2001) do. They approximate daily

at-the-money straddle returns by taking a weighted average of the zero-beta straddle returns

corresponding to strike prices immediately above and below each day’s opening level of the

S&P 100 and cumulate these daily returns each month. We denote this factor asSTR (for

“straddle returns”).

It is reassuring that over the 1986 to 1995 sample period used by Coval and Shumway, the
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STR andV OL factors have a positive correlation of 19%. SinceSTR andV OL both measure

systematic volatility exposure, a time-series regression ofSTR onV OL, or vice versa, should

yield significant loadings. Unfortunately, Table 7 shows that whileSTR andV OL load on each

other positively, the coefficient loadings are insignificant. The adjustedR2’s of the regressions

are also only 3%. The reason for the poor correspondence is that theSTR returns are extremely

volatile, compared with the low volatility ofV OL. The volatility ofSTR is 35.48% per month

(122.9% per annum), whereas Table 4 shows that the volatility ofV OL is only 3.29% per month

(11.40% per annum).

Table 7 shows that whenV OL is regressed ontoSTR, the constant (-0.28%) is insignificant.

This is what we would expect ifV OL and STR are able to price each other. However, a

regression ofSTR ontoV OL only reduces the magnitude of the rawSTR average return of

-11.02% per month to -9.96% per month, which is still significant at the 5% level. Since the

zero-beta straddle positions are only approximately delta-neutral, because the approximations

rely on a Black-Scholes (1973) formula to compute the weights in the option positions, it is

likely that theSTR returns still incorporate some residualMKT exposure. When theMKT

factor is added, the alpha becomes insignificant and the adjustedR2 increases to 15%.

While STR has a very impressive negative return, its large volatility means a person selling

straddles can easily go bankrupt, which would have happened during the 1987 crash where the

monthly return over October 1987 was 285%. In contrast, the low volatility ofV OL makes

it a less risky trading strategy. Another advantage ofV OL over STR is that taking straddle

positions requires daily or weekly rebalancing (done by Coval and Shumway, 2001), whereas

V OL is re-balanced at a monthly frequency. Finally, theV OL factor is easy to construct as the

V IX index is publicly available. The main source of option data, the Berkeley Option Database

has reliable data only from the late 1980’s and stops in 1995, and is no longer made available

for research purposes.

3 Pricing Idiosyncratic Volatility in the Cross-Section

So far, we have examined how systematic volatility risk affects cross-sectional average returns.

In this section, we investigate if the idiosyncratic volatility of stocks generates cross-sectional

patterns of average returns. Naturally, if the factors driving systematic risk are correctly spec-

ified, we should see no reward for bearing idiosyncratic risk. While we concentrate our anal-

ysis on using the Fama-French (1993) model for systematic risk, we also examine idiosyn-

17



cratic volatility relative to the traditional CAPM and total volatility (without decomposing total

volatility into systematic and idiosyncratic components).

3.1 Estimating Idiosyncratic Volatility

To measure idiosyncratic volatility for an individual stock, we run either a CAPM or Fama-

French (1993) regression:

ri
t = αi + βi

MKT MKTt + εi
t

ri
t = αi + βi

MKT MKTt + βi
SMBSMBt + βi

HMLHMLt + εi
t. (12)

Hence, we measure idiosyncratic volatility (
√

var(εi
t)) relative to the CAPM or FF-3. Given

the failure of the CAPM to explain cross-sectional returns and the ubiquity of FF-3 in empirical

financial applications, we concentrate on idiosyncratic volatility measured relative to the Fama-

French model.

To examine trading strategies based on idiosyncratic volatility, we describe trading strategies

based on a formation period ofL months, a waiting period ofM months and then a holding

period ofN months. We can describe anL/M/N strategy as follows. At montht, we compute

idiosyncratic volatilities from the regression (12) on daily data over anL month period from

montht − L − M to montht − M . At time t, we construct value-weighted portfolios based

on these idiosyncratic volatilities and hold these portfolios forN months. We concentrate our

analysis on the1/0/1 strategy, but examine robustness to various choices ofL, M and N .

For the1/0/1 strategy, we simply sort stocks into quintile portfolios based on their level of

idiosyncratic volatility computed using daily returns over the past month, and hold these value-

weighted portfolios for 1 month. The portfolios are rebalanced each month.

The construction of theL/M/N portfolios forL > 1 andN > 1 is similar to Jegadeesh

and Titman (1993), except our portfolios are value-weighted. For example, to construct12/1/6

quintile portfolios, each month we construct a value-weighted portfolio based on idiosyncratic

volatility computed on 12-months of returns ending one month prior. Similarly, we form a

value-weighted portfolio based on 12-months of returns ending two months prior, three months

prior, and so on up to six months prior. Each of these portfolios is value-weighted. We then

take the simple average of these six portfolios. Hence, each quintile portfolio changes 1/6th of

its composition each month, where each 1/6th part of the portfolio consists of a value-weighted

portfolio. The first (fifth) quintile portfolio consists of 1/6th of the lowest value-weighted (high-
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est) idiosyncratic stocks from one month ago, 1/6th of the value-weighted lowest (highest) id-

iosyncratic stocks two months ago, etc.

3.2 Patterns in Average Returns for Volatility Risk

Table 8 reports average returns of total and idiosyncratic volatility sorted portfolios, using a

1/0/1 strategy. We turn first to the portfolios sorted by total volatility, without any control

for systematic risk. Table 8 shows that average returns increase from 1.06% per month going

from quintile 1 (low total volatility stocks) to 1.22% per month for quintile 3. Then, average

returns drop. Quintile 5, which comprises stocks with the highest total volatility, experiences a

dramatic decrease in average total returns (only 0.09% per month). A FF-3 alpha, reported in

the last column, for quintile 5 is -1.16% per month, and while highly significant, it is the only

portfolio that has a significant alpha. The large spread in average returns between quintiles 1

and 5 (-0.97% per month) may just be due to inappropriate controls for systematic risk.

The next two panels of Table 8 report average returns of stocks sorted by idiosyncratic

volatility measured relative to the CAPM and FF-3 model, respectively.10 An interesting pattern

is that there is a reward in raw average returns for increasing idiosyncratic volatility, but this

does not hold for stocks with the highest idiosyncratic volatilities in quintiles 4 and 5. In both the

CAPM and FF-3 cases, the low average returns of quintiles 4 and 5 are exacerbated, compared

to the sorts on total volatility, and their alpha’s are highly statistically significant. In particular,

the average returns of quintile 5 are -1 basis point (-2 basis points) for idiosyncratic volatility

relative to the CAPM (FF-3). Stocks with high idiosyncratic risk have abysmally low average

returns.

Let us focus attention on sorts by idiosyncratic volatility relative to FF-3, which is reported

in the last panel of Table 8. The difference in raw average returns between quintile 1 and 5 is a

very large -1.06% per month. Controlling for the CAPM (FF-3) model increases the difference

in magnitude to -1.38% (-1.31%) per month. Clearly, the FF-3 model cannot account for all

systematic risk.

Table 8 shows distinct patterns in the size and book-to-market ratios of the FF-3 idiosyn-

cratic volatility portfolios. Stocks with low (high) idiosyncratic volatility are generally large

(small) stocks and have low (high) book-to-market ratios. The very low returns of quintile 5

10 If we compute idiosyncratic risk relative to a factor model withMKT andV OL factors, the patterns in

average returns and alpha’s in Table 8 are qualitatively preserved. The 5-1 alpha’s are smaller in magnitude than

for the case of idiosyncratic volatility relative to the CAPM or FF-3 models, but the alpha’s are still significant.
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are opposite to what the FF-3 model predicts. Hence, the stocks with the highest idiosyncratic

volatilities, since they are small and are value stocks, should have the highest average returns.

Nevertheless, there are three major concerns major concerns with the anomalously low average

returns of quintile 5. First, although quintile 5 contains 20% of the stocks sorted by idiosyncratic

volatility, quintile 5 represents only a small proportion of the market (only 1.9% on average).

Hence, stocks with high idiosyncratic risk consist, on average, of a small fraction of the mar-

ket. Are these patterns repeated if we only consider large stocks, or only stocks traded on the

NYSE? Second, illiquidity distortions among small stocks are pervasive, so we should control

for liquidity. Third, are these patterns robust to different formation and holding periods? We

now check how robust our findings are.

3.3 Robustness

Using Only NYSE Stocks

Table 9 examines robustness of our1/0/1 portfolio formation strategy for FF-3 idiosyncratic

volatility portfolio sorts, controlling for various effects. The table reports FF-3 alpha’s, and the

difference in FF-3 alpha’s between the quintile portfolios with the lowest and highest idiosyn-

cratic risks. First, we rank stocks based on idiosyncratic volatility using only NYSE stocks.

Excluding NASDAQ and AMEX has no effect on our results. The highest quintile of idiosyn-

cratic volatility stocks has a FF-3 alpha of -0.60% per month and the 5-1 difference is still high,

at -0.66% per month, which is significant at the 1% level.

Controlling for Size and Book-to-Market

We control for size by first forming quintile portfolios ranked on size and then within each

size quintile, we sort stocks based into quintile portfolios ranked on FF-3 idiosyncratic volatil-

ity. Within each size quintile, quintile 5 with the highest idiosyncratic volatility stocks, still

has a dramatically lower alpha. The effect is not most pronounced among the smallest stocks.

Rather, quintiles 2-4 have the largest 5-1 differences in FF-3 alpha’s, at -1.91%, -1.61% and

-0.86% per month, respectively. The average market capitalization of quintiles 2-4 is, on av-

erage, approximately 21% of the market. The t-statistics of these alpha’s are all above 4.5 in

absolute magnitude. The 5-1 alpha’s for the smallest and largest quintiles are actually statisti-

cally insignificant at the 5% level. Hence, it is definitely not small stocks that are driving these

results. We can control for size by averaging the returns of the quintile idiosyncratic volatility
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portfolios over the five size portfolios. Controlling for size, the 5-1 difference in FF-3 alpha’s

is still -1.04% per month.

The remainder of Table 9 repeats the explicit double-sort characteristic controls for book-to-

market ratios, liquidity, volume, dispersion in analysts’ forecasts, and momentum. In each case,

we first sort stocks into quintiles based on the characteristic and then, within each quintile we

sort stocks based on FF-3 idiosyncratic volatility. To control for the characteristic, we average

the returns over each of the five characteristic portfolios.

We turn next to the book-to-market control. The value effect is concentrated among small

stocks. Perhaps our idiosyncratic volatility portfolios are primarily composed of growth stocks,

with lower average returns than value stocks. This is not the case. When we control for the

book-to-market effect, stocks with the highest idiosyncratic volatility still have very low FF-3

alpha’s, and the 5-1 difference in alpha’s is -80% per month, and highly significant.

Controlling for Liquidity and Volume

We use the historical liquidity betas of Pástor and Stambaugh (2003) to proxy for liquidity.

Controlling for liquidity does not remove the low average returns of high idiosyncratic volatility

stocks. Quintile 5 still has very low average returns, with a FF-3 alpha of -1.01% per month.

The 5-1 difference in alpha’s is -1.08% per month, only slightly less in magnitude than the 5-1

difference in alpha’s without the liquidity control in Table 8 (-1.31% per month). We control for

volume because Lee and Swaminathan (2000) argue that high volume proxies for differences

in opinion, which predicts lower returns. When we control for volume, the 5-1 difference in

alpha’s remains significant at the 1% level at -1.22% per month. Hence, the low returns on high

idiosyncratic risk stocks are robust to controlling for liquidity and volume.

Controlling for Dispersion in Analysts’ Forecasts

Diether, Malloy and Scherbina (2002) provide evidence that stocks with higher dispersion in

analysts’ earnings forecasts have lower average returns than stocks with low dispersion of an-

alysts’ forecasts. Stocks with high dispersion in analysts’ forecasts tend to be more volatile

stocks. If we use the sample period 1983-2000, similar to Diether, Malloy and Scherbina, we

can test this hypothesis by performing a characteristic control for the dispersion of analysts’

forecasts. We take the quintile portfolios of stocks sorted on increasing dispersion of analysts’

forecasts (Table VI of Diether, Malloy and Scherbina, 2002, p2128) and within each quintile

sort stocks on idiosyncratic volatility. Note that this universe of stocks are mostly large firms,
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where the idiosyncratic volatility effect is weak, because analysts usually do not make forecasts

for small firms.

The line labelled ’Controlling for Dispersion of Analysts’ Forecasts’ in Table 8 presents the

results for averaging the idiosyncratic volatility portfolios across the forecast dispersion quin-

tiles. The 5-1 difference in alpha’s is still -0.39% per month, with a robust t-statistic of -2.09.

While the shorter sample period may reduce power, the dispersion of analysts’ forecasts reduces

the non-controlled 5-1 alpha considerably (from -1.31% per month). However, dispersion in an-

alysts’ forecasts cannot account for all of the low returns to stocks with high idiosyncratic risk.

We can also turn the question around and ask if the low average returns of stocks with high

dispersion of analysts’ forecasts is due to the low returns of stocks with high idiosyncratic risk.

We first sort stocks into quintiles on the basis of idiosyncratic volatility, and then within each

quintile sort stocks into portfolios ranked by forecast dispersion, using the set of firms used by

Diether, Malloy and Scherbina. We compute the difference in FF-3 alpha’s for stocks with high

and low forecast dispersion, controlling for idiosyncratic volatility by averaging stocks over the

idiosyncratic volatility quintiles. The 5-1 FF-3 alpha for forecast dispersion, controlling for

idiosyncratic volatility, is -0.36% per month, which is insignificant at the 5% level (the robust

t-statistic is -1.47).

Controlling for Momentum

One possibility of the low returns of high idiosyncratic risk stocks could be due to momentum.

In particular, stocks with very low returns have very high volatility, by definition, and these

stocks continue to have low returns (see Jegadeesh and Titman, 1993). Of course, stocks that

are past winners also have very high volatility, but loser stocks could be over-represented in

the high idiosyncratic risk quintile. The last row of Table 8 shows that this is not the case.

Controlling for returns over the past month does not remove the very low FF-3 alpha of quintile

5 (-0.59% per month), and the 5-1 difference in alpha’s is still -0.66% per month, which is

statistically significant at the 1% level. What is surprising is that even the 5-1 difference in the

raw average returns is very large in magnitude, at -0.84% per month, with a t-statistic of -3.76.

Clearly, momentum cannot account for these patterns.

3.4 Can we Explain the Negative Premium for Idiosyncratic Risk?

A possible explanation for the large negative returns of high idiosyncratic volatility stocks is

that stocks with large idiosyncratic risk relative to FF-3 have larger exposure to movements in
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systematic volatility. This is not unreasonable, since if market volatility increases, individual

stock volatility might also increase. Table 10 tries to price the FF-3 idiosyncratic volatility

quintiles with theV OL factor. Panel A shows that including theV OL factor into the standard

linear factor specifications reduces the difference in alpha’s between portfolios with the highest

and lowest idiosyncratic risk. For example, for the FF-3 model (FF-3 model augmented with

UMD), the 5-1 alpha is -1.43% (-1.36%) per month. This is reduced in magnitude to -1.34%

(-1.26%) per month includingV OL. However, the reductions are small and amount to approx-

imately 10 basis points per month. All of the factor specifications fail to pass a GRS test, with

p-values of less than 1%.

We report factor loadings of the fullMKT , SMB, UMD andV OL specification in Panel

B. Only HML andV OL have factor loadings that go in the correct direction from quintile 1

(high returns) to 5 (low returns). The spread inHML factor loadings is0.17− (−0.42) = 0.59.

However, the average return ofHML over the 1986-2000 sample period is -4 basis points

per month, soHML’s contribution to explaining the large negative 5-1 spread is negligible.

While the mean ofV OL is -0.58% per month (see Table 4), the spread in the factor loadings

of V OL is only −0.13 − .07 = −0.20, so V OL only reduces the large negative alpha by

−0.20 × −0.58% = 0.12% per month. Hence, idiosyncratic volatility risk accounts for some,

but cannot remove, the anomalous low returns of stocks with high idiosyncratic risk.

If standard factor models cannot price idiosyncratic volatility risk and exposure to system-

atic volatility also cannot explain the low returns to high idiosyncratic risk stocks, are there

other explanations? To help disentangle various stories, Table 11 reports FF-3 alpha’s of other

L/M/N strategies, with anL-month formation period that endedM months ago prior to timet

and is held forN months. First, we can rule out possible contemporaneous measurement errors

through forming the portfolios using data ending one-month prior (M = 1). In the1/1/1 strat-

egy, the 5-1 difference in FF-3 alpha’s is still -0.82% per month, which is significant at the 1%

level.

One possible behavioral explanation for our results is that higher idiosyncratic volatility

does earn higher returns, but short-term over-reaction forces returns to be low in the next month.

If we hold high idiosyncratic risk stocks for a long horizon (N = 12 months), we might see a

positive relation between idiosyncratic risk and average returns. The second row of Table 11

shows that this is not the case. For the1/1/12 strategy, we still see very low FF-3 alpha’s for

quintile 5, and the 5-1 difference in alpha’s is still -0.67% per month, which is significant at the

1% level.
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By restricting the formation period toL = 1 month, our previous results may just be cap-

turing various short-term events that impact idiosyncratic volatility. For example, the portfolio

of stocks with high idiosyncratic volatility may be largely composed of stocks that have just

made, or are just about to make, earnings announcements. To ensure that we are not capturing

specific short-term corporate events, we extend our formation period toL = 12 months. The

third row of Table 11 reports FF-3 alpha’s for a12/1/1 strategy. Using one entire year of data to

compute idiosyncratic volatility does not remove the anomalous low return-high idiosyncratic

risk pattern: the 5-1 difference in alpha’s is -1.12% per month. Similarly, the patterns are robust

for the12/1/12 strategy, which has a 5-1 alpha of -0.77% per month.

While the low returns to high idiosyncratic risk stocks are amazingly robust to different for-

mation and holding periods, a further possibility is that volatility, by definition, symmetrically

treats gains and losses. Since volatility is asymmetric (and larger with downward moves), high

idiosyncratic risk stocks may have average returns during normal or bull markets but their low

returns may be driven largely by bear market periods. We can check this hypothesis by examin-

ing the returns of high idiosyncratic volatility stocks conditioning on observations which have

the lowest 20% of market returns and comparing them to bull markets that have the highest 20%

of market returns. For the periods of lowest (highest) 20% of market returns, the FF-3 alpha of

quintile 5 is -2.83% (-2.98%) per month, both highly significant at the 1% level. Hence, stocks

with high idiosyncratic risk earn low returns in both bull and bear markets.

We also find that the low returns of quintile 5 are robust over NBER recessions and expan-

sions. During NBER expansions (recessions), the FF-3 alpha of quintile 5 is -1.19% (-1.88%).

Both the expansion and recession FF-3 alpha’s are significant at the 1% level. There are more

negative returns to high idiosyncratic volatility stocks during recessions, but the fact that the

t-statistic in NBER expansions is -7.07 shows that the low returns to high idiosyncratic risk is

also a phenomenon that thrives during expansions. A final possibility is that this effect is con-

centrated during the most volatile periods in the market. To test for this possibility, we compute

FF-3 alpha’s of quintile 5 conditioning on periods with the lowest or highest 20% of absolute

moves of the market return. These are ex-post periods of low or high market volatility. During

stable (volatile) periods, the FF-3 alpha of quintile 5 is -1.70% (-0.89%) per month, both sig-

nificant at the 5% level. Hence, the most negative returns of the high idiosyncratic risk strategy

are earned during periods when the market is stable. Hence, these results indicate that it is not

bull or bear market periods, asymmetries across the business cycle, or the clustering of periods

of volatility that is driving the low returns to high idiosyncratic risk exposure.
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4 Conclusion

Stocks with high exposure to innovations in systematic volatility earn low returns. We proxy

for innovations in aggregate volatility by using changes in theV IX index, an index of Black-

Scholes (1973) implied volatilities constructed by the Chicago Board of Exchange. The low

returns earned by stocks with high coefficient loadings to changes in theV IX index is consis-

tent with systematic volatility carrying a negative price of risk. We estimate that a mimicking

factor for market volatility risk has a significant negative mean of -0.87% per month in the

cross-section and is robust to controlling for size, value, momentum and liquidity factors.

According to a standard asset pricing framework, idiosyncratic volatility should not be

priced. Recent theories predict that stocks with high idiosyncratic volatility may earn high

expected returns to compensate for imperfect diversification. A puzzling result that we uncover

is that stocks with high idiosyncratic volatility have abysmally low returns. In particular, using

the Fama-French (1993) model to adjust for systematic risk, a quintile portfolio with stocks

with the highest idiosyncratic risk earns total returns of just -0.02% per month. The results are

surprisingly robust to controlling for size, value, size, liquidity, volume and momentum effects

and the effect persists in bull and bear markets, NBER recessions and expansions, and volatile

and stable periods. Accounting for exposure to aggregate volatility helps to price, but cannot

remove, the anomalous low returns of stocks with high idiosyncratic risk.

We also find that the low returns of high idiosyncratic volatility stocks persist for different

formation and holding periods as long as one year. This rules out stories of short-term over-

reaction or reaction to short-term corporate events. It is also unlikely that economic agents

actually prefer stocks with high idiosyncratic risk, leading to their low returns. If this were the

case, agents would exhibit no home bias. Hence, our results on the cross-sectional expected

return patterns to idiosyncratic volatility present something of a puzzle.
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Table 1: Daily Sample Moments

Correlations
Mean Stdev Auto MKT SV OL ∆SV OL RV OL ∆RV OL V IX

MKT 0.0004 0.0097 0.08
SV OL 0.0099 0.0056 0.98 -0.04
∆SV OL 0.0001 0.0148 0.07 -0.25 0.08
RV OL 0.0120 0.0087 0.49 -0.23 0.54 0.43
∆RV OL -0.0000 0.0088 -0.43 -0.26 -0.00 0.40 0.50
V IX 0.2052 0.0785 0.94 -0.18 0.79 0.15 0.68 0.03
∆V IX 0.0000 0.0265 -0.07 -0.64 0.00 0.45 0.29 0.39 0.16

We report daily sample moments of the excess market returnMKT , sample volatilitySV OL, range-based
volatility measureRV OL, and the daily volatilityV IX index from the CBOE.∆SV OL, ∆RV OL and
∆V IX refer to daily changes inSV OL, RV OL andV IX, respectively. ‘Auto’ denotes daily autocorrela-
tion. There are 3784 daily observations from January 1986 to December 2000.
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Table 2: Portfolios Sorted by Exposure to Aggregate Volatility Shocks

Std Turn- % Mkt CAPM FF-3
Rank Mean Dev over Share Size B/M Alpha Alpha

Portfolios Sorted byβ∆SV OL

1 1.11 5.65 0.74 7.9% 3.42 0.92 -0.27 -0.16
[-1.44 ] [-0.82]

2 1.16 4.58 0.78 25.5% 4.24 0.84 -0.10 -0.17
[-0.89 ] [-1.48]

3 1.41 4.31 0.72 30.5% 4.20 0.88 0.20 0.15
[2.27 ] [2.06 ]

4 1.34 4.57 0.77 27.6% 4.28 0.84 0.09 0.06
[1.37 ] [0.90 ]

5 1.12 6.13 0.75 8.4% 3.44 0.94 -0.32 -0.07
[-1.48 ] [-0.43]

5-1 0.01 -0.04 0.09
[0.02] [-0.15 ] [0.30 ]

Portfolios Sorted byβ∆RV OL

1 1.31 6.62 0.74 7.0% 3.75 0.96 -0.16 0.05
[-0.68] [0.27]

2 1.18 4.61 0.78 24.2% 4.81 0.75 -0.08 -0.11
[-0.83] [-1.06]

3 1.28 4.37 0.73 31.4% 4.90 0.77 0.06 -0.03
[0.64] [-0.46]

4 1.54 4.50 0.78 28.9% 4.90 0.75 0.29 0.28
[4.04] [3.69]

5 0.89 5.60 0.75 8.5% 3.77 0.98 -0.48 -0.34
[-2.64] [-2.04]

5-1 -0.42 -0.32 -0.39
[-1.45] [-1.07] [-1.31]

Portfolios Sorted byβ∆V IX

1 1.64 5.53 0.74 9.4% 3.70 0.89 0.27 0.30
[1.66] [1.77]

2 1.39 4.43 0.78 28.7% 4.77 0.73 0.18 0.09
[1.82] [1.18]

3 1.36 4.40 0.72 30.4% 4.77 0.76 0.13 0.08
[1.32] [1.00]

4 1.21 4.79 0.78 24.0% 4.76 0.73 -0.08 -0.06
[-0.87] [-0.65]

5 0.60 6.55 0.73 7.4% 3.73 0.89 -0.88 -0.53
[-3.42] [-2.88]

5-1 -1.04 -1.15 -0.83
[-3.90] [-3.54] [-2.93]

We form value-weighted quintile portfolios every month from regressing excess stock returns of individual
stocks on∆SV OL, ∆RV OL or ∆V IX, controlling for theMKT factor, as in equation (10). The regres-
sion is run on daily excess returns using data over the previous month. Stocks are sorted into quintiles based
on the regression coefficientsβ∆SV OL, β∆RV OL or β∆SV OL from lowest (quintile 1) to highest (quintile
5). The statistics in the columns labelled Mean and Std Dev are measured in monthly percentage terms.
Size reports the average log market capitalization for firms within the portfolio and B/M reports the average
book-to-market ratio. The numbers in the Turnover column list the average proportion of firms that leave the
quintile portfolio each month. The row 5-1 refers to the difference in monthly returns between portfolio 5
and portfolio 1. The Alpha columns report Jensen’s alpha with respect to the CAPM or Fama-French (1993)
three-factor model. Robust Newey-West (1987) t-statistics are reported in square brackets. The sample period
is from January 1986 to December 2000.
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Table 3: Portfolios Sorted onβ∆V IX Controlling for Liquidity or Volume

CAPM FF-3
Rank Mean Std Dev Alpha Alpha

Panel A: Controlling for Liquidity

1 1.57 5.47 0.21 0.19
[1.31] [1.34]

2 1.48 4.48 0.27 0.15
[2.25] [1.68]

3 1.40 4.54 0.15 0.09
[1.59] [0.97]

4 1.30 4.74 0.02 -0.02
[0.21] [-0.17]

5 0.89 5.84 -0.52 -0.36
[-2.87] [-2.09]

5-1 -0.68 -0.73 -0.55
[-3.04] [-2.99] [-2.15]

Panel B: Controlling for Volume

1 1.10 4.73 -0.11 -0.13
[-0.58] [-1.34]

2 1.18 4.01 0.08 -0.08
[0.46] [-0.92]

3 1.18 3.78 0.10 -0.04
[0.66] [-0.50]

4 0.98 4.18 -0.17 -0.23
[-1.06] [2.16]

5 0.38 5.31 -0.90 -0.71
[-3.86] [-4.84]

5-1 -0.72 -0.79 -0.58
[-3.49] [-3.22] [-3.03]

In Panel A, we first sort stocks into five quintiles based on their historical liquidity beta, following Pástor
and Stambaugh (2003). Then, within each quintile, we sort stocks based on theirβ∆V IX coefficient loadings
into five portfolios. All portfolios are rebalanced monthly and value-weighted. The five portfolios sorted on
β∆V IX are then averaged over each of the five liquidity beta portfolios. Hence, they areβ∆V IX quintile
portfolios controlling for liquidity. In Panel B, the same approach is used except we first sort stocks into five
portfolios based on their past trading volume, and then within each quintile, stocks are sorted onβ∆V IX . The
portfolios in Panel B are averaged over the five volume portfolios. Hence, they areβ∆V IX quintile portfolios
controlling for liquidity. The table reports alphas from a CAPM and Fama-French (1993) regression. The
row 5-1 refers to the difference in monthly returns between portfolio 5 and portfolio 1. Robust Newey-West
(1987) t-statistics are reported in square brackets. The sample period is from January 1986 to December
2000.

31



Table 4: A Cross-Sectional Volatility Factor

Mean Std Dev Auto
V OL -0.58 3.29 -0.15

Correlation of Factors
MKT SMB HML UMD

SMB 0.17
HML -0.50 -0.50
UMD 0.22 0.32 -0.46
V OL 0.16 0.48 -0.40 0.22

RegressingV OL onto Various Factors

const MKT SMB HML UMD Adj R2

-0.68 0.11 0.02
[-2.74] [1.03]
-0.46 -0.01 0.34 -0.21 0.25

[-2.12] [-0.09] [3.07] [-0.21]
-0.47 -0.01 0.34 -0.21 0.01 0.25

[-1.94] [-0.09] [3.24] [-1.36] [0.08]

The factorV OL is formed by sorting all stocks into three portfolios based onβ∆V IX from the regression
(10) run at a daily frequency using data over the previous month and the portfolios are rebalanced every
month. The three value-weighted portfolios have breakpoints set at one-third and two-thirds of theβ∆V IX

coefficients for all stocks. We take the return difference between the top third and bottom third portfolios to
form V OL. We report monthly summary statistics ofV OL in percentage terms, and correlations ofV OL
with respect to other factorsSMB, HML, the size and value factors of Fama and French (1993), and the
momentum factorUMD from Kenneth French’s web site. We also report regressions ofV OL onto various
combinations ofMKT , SMB, HML andUMD. Robust Newey-West (1987) t-statistics are reported in
square brackets. The sample period is from January 1986 to December 2000.
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Table 5: Pricing Portfolios Sorted byβ∆V IX

Panel A: Pricing β∆V IX Quintile Portfolios Using Various Factor Models

GRS Test Portfolio Alpha’s
Model p-value 1 2 3 4 5 5-1

MKT 0.007 0.27 0.18 0.13 -0.08 -0.88 -1.15
[1.66] [1.82] [1.32] [-0.87] [-3.42] [-3.54]

MKT SMB HML 0.030 0.30 0.09 0.08 -0.06 -0.53 -0.83
[1.77] [1.18] [1.00] [-0.65] [-2.88] [-2.93]

MKT SMB HML UMD 0.023 0.44 0.11 -0.00 -0.01 -0.48 -0.92
[2.50] [1.20] [-0.03] [-0.12] [-2.36] [-2.86]

MKT V OL 0.116 0.03 -0.07 0.12 0.11 -0.34 -0.36
[0.17] [-1.47] [-1.44] [1.77] [-2.19] [-2.68]

MKT SMB HML V OL 0.150 0.05 -0.07 0.09 0.08 -0.27 -0.33
[0.43] [-1.36] [1.25] [1.45] [-2.11] [-2.43]

MKT SMB HML UMD V OL 0.106 0.18 -0.05 0.01 0.14 -0.22 -0.40
[1.55] [-0.86] [0.11] [2.34] [-1.67] [-2.78]

Panel B: Factor Loadings

MKT SMB HML UMD V OL

1 1.12 0.27 -0.18 -0.12 -0.54
[43.8] [5.06] [-2.65] [-3.38] [-13.5]

2 0.98 -0.05 -0.02 -0.02 -0.34
[69.9] [-2.38] [-0.69] [-0.87] [-16.3]

3 0.99 -0.06 0.12 0.07 0.02
[51.2] [-1.83] [2.11] [2.64] [0.44]

4 1.04 -0.04 0.05 -0.05 0.32
[75.7] [-1.93] [2.60] [-2.45] [11.3]

5 1.08 0.30 -0.26 -0.05 0.57
[30.2] [6.62] [-4.61] [-1.60] [12.1]

In Panel A, we report a Gibbons-Ross-Shanken (1989) (GRS) test for pricing the quintile portfolios sorted
by β∆V IX , reported in Table 2, for various factor models using combinations of the factorsMKT , SMB,
HML, UMD andV OL. UMD is the momentum factor from Kenneth French’s website andV OL is the
volatility factor. The columns labelled ’1’ through ’5’ report portfolio alpha’s from each linear factor model.
The column labelled ’5-1’ refers to the difference in monthly returns between portfolio 5 and portfolio 1.
Panel B reports factor loadings from the most comprehensiveMKT , SMB, HML, UMD andV OL factor
model. Robust Newey-West (1987) t-statistics are reported in square brackets. The sample period is from
January 1986 to December 2000.
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Table 6: Estimating the Price of Volatility by Fama-MacBeth (1973)

Panel A: Test Portfolio Fama-French (1993) Alpha’s

Ranking onβ∆V IX

1 low 2 3 4 5 high
Ranking 1 low -0.54 0.13 -0.25 0.10 -1.04
onβMKT [-1.06] [0.63] [-1.13] [0.51] [-3.76]

2 -0.22 0.02 -0.39 -0.17 -0.57
[-1.24] [0.14] [-2.20] [-1.30] [-2.41]

3 -0.20 -0.06 -0.00 -0.39 -0.28
[-1.08] [-0.31] [-0.01] [-2.38] [-1.56]

4 0.26 -0.04 -0.03 -0.11 -0.61
[1.04] [-0.33] [0.19] [-0.99] [-2.61]

5 high 0.31 0.30 0.10 -0.10 -0.66
[0.95] [1.42] [0.48] [-0.41] [-1.92]

Panel B: Fama-MacBeth (1973) Factor Premiums

MKT SMB HML UMD LIQ V OL Adj R2

0.22 -0.02
[0.34]
1.06 -0.80 0.13 0.50

[1.59] [-1.82] [0.26]
1.25 -0.69 0.31 0.32 0.48

[1.76] [ -1.47] [ 0.56] [ 0.41]
1.27 -0.77 0.60 0.11 -0.03 0.51

[1.67] [-1.48] [1.00] [0.13] [-1.41]
1.18 -0.87 0.56

[1.78] [-2.46]
0.52 -0.82 -0.33 -0.83 0.67

[0.77] [-1.85] [-0.65] [-2.37]
0.59 -0.78 -0.26 0.22 -0.83 0.65

[0.86] [-1.70] [-0.49] [0.29] [-2.37]
0.59 -0.87 0.04 -0.01 -0.03 -0.87 0.70

[0.79] [-1.71] [0.07] [-0.02] [-1.86] [-2.26]

In Panel A, we report Fama-French (1993) alpha’s for the 25 portfolios sorted first onβMKT and then on
β∆V IX . These 25 portfolios are used as test assets in estimating the factor premiums using Fama-MacBeth
(1973) in Panel B.MKT is the excess return on the market portfolio,SMB andHML are the Fama-French
(1993) size and value factors,UMD is the momentum factor from Kenneth French’s website andLIQ is
the aggregate liquidity measure from Pástor and Stambaugh (2003).V OL is the volatility factor. Robust
Newey-West (1987) t-statistics are reported in square brackets. The sample period is from January 1986 to
December 2000.
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Table 7: Zero-Beta StraddleSTR Returns andV OL Factor Regressions

const MKT V OL STR Adj R2

V OL Regressions -0.28 0.01 0.03
[-1.46] [1.19]
-0.27 -0.04 0.01 0.03

[-0.22] [-0.74] [1.15]

STR Regressions -9.96 3.73 0.03
[-2.21] [0.78]
-8.23 -2.95 2.64 0.15

[-1.77] [-1.42] [0.89]

We regressSTR, the monthly returns of zero-beta straddle positions constructed by Coval and Shumway
(2001), ontoMKT and V OL and regressV OL onto MKT and STR. Robust Newey-West (1987) t-
statistics are reported in square brackets. The sample period is from January 1986 to December 1995.
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Table 8: Portfolios Sorted by Volatility

Std Turn- % Mkt CAPM FF-3
Rank Mean Dev over Share Size B/M Alpha Alpha

Portfolios Sorted by Total Volatility

1 1.06 3.71 0.40 41.7% 4.66 0.88 0.14 0.03
[1.84] [0.53]

2 1.15 4.48 0.63 33.7% 4.70 0.81 0.13 0.08
[2.14] [1.41]

3 1.22 5.63 0.67 15.5% 4.10 0.82 0.07 0.12
[0.72] [1.55]

4 0.99 7.15 0.64 6.7% 3.47 0.86 -0.28 -0.17
[-1.73] [-1.42]

5 0.09 8.30 0.41 2.4% 2.57 1.08 -1.21 -1.16
[-5.07] [-6.85]

5-1 -0.97 -1.35 -1.19
[-2.86] [-4.62] [-5.92]

Portfolios Sorted by Idiosyncratic Volatility Relative to the CAPM

1 1.10 3.87 0.41 51.6% 4.82 0.86 0.15 0.09
[2.17] [1.88]

2 1.13 4.70 0.63 28.5% 4.71 0.80 0.07 0.05
[1.38] [0.78]

3 1.23 5.86 0.67 12.4% 4.06 0.82 0.05 0.09
[0.54] [1.11]

4 0.94 7.07 0.64 5.5% 3.41 0.87 -0.32 -0.25
[-2.03] [-2.45]

5 -0.01 8.19 0.41 2.1% 2.51 1.10 -1.29 -1.28
[-5.32] [-7.84]

5-1 -1.11 -1.44 -1.37
[-3.38] [-4.88] [-7.25]

Portfolios Sorted by Idiosyncratic Volatility Relative to FF-3

1 1.04 3.83 0.41 53.5% 4.86 0.85 0.11 0.04
[1.57] [0.99]

2 1.16 4.74 0.64 27.4% 4.72 0.80 0.11 0.09
[1.98] [1.51]

3 1.20 5.85 0.68 11.9% 4.07 0.82 0.04 0.08
[0.37] [1.04]

4 0.87 7.13 0.65 5.2% 3.42 0.87 -0.38 -0.32
[-2.32] [-3.15]

5 -0.02 8.16 0.42 1.9% 2.52 1.10 -1.27 -1.27
[-5.09] [-7.68]

5-1 -1.06 -1.38 -1.31
[-3.10] [-4.56] [-7.00]

We form value-weighted quintile portfolios every month by sorting stocks based on total volatility, idiosyn-
cratic volatility relative to the CAPM and idiosyncratic volatility relative to the Fama-French (1993) model.
Portfolios are formed every month, based on volatility computed using daily data over the previous month.
Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The statistics in the columns
labelled Mean and Std Dev are measured in monthly percentage terms. Size reports the average log market
capitalization for firms within the portfolio and B/M reports the average book-to-market ratio. The num-
bers in the Turnover column list the average proportion of firms that leave the quintile portfolio each month.
The row ’5-1’ refers to the difference in monthly returns between portfolio 5 and portfolio 1. The Alpha
columns report Jensen’s alpha with respect to the CAPM or Fama-French (1993) three-factor model. Robust
Newey-West (1987) t-statistics are reported in square brackets. The sample period is July 1963 to December
2000.
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Table 9: Portfolios Sorted on Idiosyncratic Volatility (FF-3) Controlling for Various Effects

Ranking on Idiosyncratic Volatility
1 low 2 3 4 5 high 5-1

NYSE Stocks Only 0.06 0.04 0.02 -0.04 -0.60 -0.66
[1.20] [0.75] [0.30] [-0.40] [-5.14] [-4.85]

Size Quintiles 1 small 0.11 0.26 0.31 0.06 -0.43 -0.55
[0.72] [1.56] [1.76] [0.29] [-1.54] [-1.84]

2 0.19 0.20 -0.07 -0.65 -1.73 -1.91
[1.49] [1.74] [-0.67] [-5.19] [-8.14] [-7.69]

3 0.12 0.21 0.03 -0.27 -1.49 -1.61
[1.23] [2.40] [0.38] [-3.36] [-10.1] [-7.65]

4 0.03 0.22 0.17 -0.03 -0.82 -0.86
[0.37] [2.57] [2.47] [-0.45] [-6.61] [-4.63]

5 large 0.09 0.04 0.03 0.14 -0.17 -0.26
[1.62] [0.72] [0.51] [1.84] [-1.40] [-1.74]

Controlling for Size 0.11 0.18 0.09 -0.15 -0.93 -1.04
[1.30] [2.49] [1.35] [-1.99] [-6.81] [-5.69]

Controlling for Book-to-Market 0.61 0.69 0.71 0.50 -0.19 -0.80
[3.02] [2.80] [2.49] [1.47] [-0.48] [-2.90]

Controlling for Liquidity 0.08 0.09 -0.01 -0.16 -1.01 -1.08
[1.71] [1.53] [-0.09] [-1.62] [-8.61] [-7.98]

Controlling for Volume -0.03 0.02 -0.01 -0.39 -1.25 -1.22
[-0.49] [0.39] [-0.32] [-7.11] [-10.9] [-8.04]

Controlling for Dispersion 0.12 -0.07 0.11 0.01 -0.27 -0.39
in Analysts’ Forecasts [1.57] [-0.76] [1.12] [0.09] [-1.76] [-2.09]

Controlling for Momentum 0.07 0.08 0.09 -0.05 -0.59 -0.66
[0.43] [0.94] [1.26] [-0.47] [-3.60] [-2.71]

The table reports Fama and French (1993) alpha’s, with robust Newey-West (1987) t-statistics in square
brackets. All the strategies are1/0/1 strategies, but control for various effects. The column ’5-1’ refers to
the difference in FF-3 alpha’s between portfolio 5 and portfolio 1. In the panel labelled ’NYSE Stocks Only’,
we sort stocks into quintile portfolios based on their idiosyncratic volatility, relative to the FF-3 model, using
only NYSE stocks. We use daily data over the previous month and rebalance monthly. In the panel labelled
’Size Quintiles’, each month we first sort stocks into five quintiles on the basis of size. Then, within each size
quintile, we sort stocks into five portfolios sorted by idiosyncratic volatility. In the panels controlling for size,
liquidity volume and momentum, we perform a double sort. Each month, we first sort stocks based on the
first characteristic (size, book-to-market, liquidity, volume, dispersion of analysts’ forecasts, or momentum)
and then, within each quintile we sort stocks based on idiosyncratic volatility, relative to the FF-3 model.
The five idiosyncratic volatility portfolios are then averaged over each of the five characteristic portfolios.
Hence, they represent idiosyncratic volatility quintile portfolios controlling for the characteristic. Liquidity
represents the Ṕastor and Stambaugh (2003) historical liquidity beta, and momentum represents past 1-month
returns. The sample period is July 1963 to December 2000 for all controls with the exceptions of liquidity
(February 1968 to December 2000) and the dispersion of analysts’ forecasts (February 1983 to December
2000). All portfolios are value-weighted.
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Table 10: Pricing Portfolios Sorted on Volatility

Panel A: Pricing Idiosyncratic Volatility (Relative to FF-3) Quintile Portfolios Using Various Factor Models

GRS Test Portfolio Alpha’s
Model p-value 1 2 3 4 5 5-1

MKT 0.000 0.30 -0.01 -0.17 -0.93 -1.92 -2.22
[2.16] [-0.13] [-0.83] [-3.02] [-3.98] [-3.73]

MKT SMB HML 0.000 0.13 -0.83 0.05 -0.48 -1.31 -1.43
[1.64] [-0.06] [0.38] [-2.82] [-4.04] [-3.91]

MKT SMB HML UMD 0.000 0.12 -0.11 0.03 -0.48 -1.28 -1.36
[1.63] [-0.86] [0.24] [-2.74] [-4.09] [-3.37]

MKT V OL 0.001 0.11 -0.10 -0.01 -0.56 -1.35 -1.47
[1.28] [-0.83] [-0.04] [-1.99] [-3.45] [-3.23]

MKT SMB HML V OL 0.000 0.07 -0.11 0.03 -0.48 -1.28 -1.34
[1.04] [-0.86] [0.24] [-2.74] [-4.09] [-3.90]

MKT SMB HML UMD V OL 0.003 0.06 0.06 0.14 -0.40 -1.21 -1.26
[0.98] [0.63] [1.13] [-2.22] [-3.49] [-3.41]

Panel B: Factor Loadings

MKT SMB HML UMD V OL

1 0.96 -0.19 0.17 0.01 -0.13
[43.6] [-4.92] [2.93] [0.31] [-2.39]

2 1.08 0.00 -0.05 -0.16 -0.11
[35.4] [0.01] [-1.12] [-3.44] [-2.44]

3 1.17 0.43 -0.22 -0.10 -0.04
[33.9] [6.81] [-3.02] [-2.24] [-0.79]

4 1.21 0.84 -0.39 -0.07 -0.01
[22.4] [9.22] [-3.57] [-1.18] [-0.09]

5 1.10 1.23 -0.42 -0.07 0.07
[13.2] [9.30] [-1.90] [-0.64] [0.37]

In Panel A, we report a Gibbons-Ross-Shanken (1989) (GRS) test for pricing the quintile portfolios sorted
by idiosyncratic volatility relative to FF-3, reported in the last panel of Table 8, for various factor models
using combinations of the factorsMKT , SMB, HML, UMD andV OL. UMD is the momentum factor
from Kenneth French’s website andV OL is the volatility factor. The columns labelled ’1’ through ’5’ report
portfolio alpha’s from each linear factor model. The column labelled ’5-1’ refers to the difference in monthly
returns between portfolio 5 and portfolio 1. Panel B reports factor loadings from the most comprehensive
MKT , SMB, HML, UMD andV OL factor model. Robust Newey-West (1987) t-statistics are reported
in square brackets. The sample period is from January 1986 to December 2000.
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Table 11: Quintile Portfolios of FF-3 Idiosyncratic Volatility ofL/M/N Strategies

Ranking on Idiosyncratic Volatility
Strategy 1 low 2 3 4 5 high 5-1

1/1/1 0.06 0.04 0.09 -0.18 -0.82 -0.88
[1.47] [0.77] [1.15] [-1.78] [-4.88] [-4.63]

1/1/12 0.03 0.02 -0.02 -0.17 -0.64 -0.67
[0.91] [0.43] [-0.37] [-1.79] [-5.27] [-4.71]

12/1/1 0.04 0.08 -0.01 -0.29 -1.08 -1.12
[1.15] [1.32] [-0.08] [-2.02] [-5.36] [-5.13]

12/1/12 0.04 0.04 -0.02 -0.35 -0.73 -0.77
[1.10] [0.54] [-0.23] [-2.80] [-4.71] [-4.34]

The table reports Fama and French (1993) alpha’s, with robust Newey-West (1987) t-statistics in square
brackets. The column ’5-1’ refers to the difference in FF-3 alpha’s between portfolio 5 and portfolio 1. We
rank stocks into quintile portfolios of idiosyncratic volatility, relative to FF-3, usingL/M/N strategies. At
montht, we compute idiosyncratic volatilities from the regression (12) on daily data over anL month period
from monthst− L−M to montht−M . At time t, we construct value-weighted portfolios based on these
idiosyncratic volatilities and hold these portfolios forN months, following Jegadeesh and Titman (1993),
except our portfolios are value-weighted. The sample period is July 1963 to December 2000.
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The figure showsSV OL, RV OL andV IX, plotted at a monthly frequency. We annualizeSV OL and
RV OL by multiplying the daily series by

√
250. The sample period is January 1986 to December 2000.

Figure 1:SV OL andV IX
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The figure shows the level of theV IX index (top panel) and cumulative returns of theV OL factor (bottom
panel). The sample period is January 1986 to December 2000.

Figure 2: Cumulative Returns of theV OL Factor
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