The Cross-Section of Volatility and Expected Retdrns

Andrew Ang
Columbia University and NBER

Robert J. Hodrick
Columbia University and NBER

Yuhang Xing
Rice University

Xiaoyan Zhan§
Cornell University

First Version: 20 July, 2003
This Version: 13 August, 2003

*We thank Joe Chen, Mike Chernov, Jun Liu, Paul Hribar, Jun Pan, Matt Rhodes-Kropf, Steve Ross
and David Weinbaum for helpful discussions. We thank Kenneth French, Anna Scherbina and Tyler
Shumway for kindly providing data. Andrew Ang and Bob Hodrick acknowledge support from the NSF.

fColumbia Business School, 3022 Broadway 805 Uris, New York NY 10027. Ph: (212) 854-9154,
Email: aa610@columbia.edu, WWW: http://www.columbia.ecas610.

fColumbia Business School, 3022 Broadway Uris Hall, New York, NY 10027. Ph: (212) 854-3413,
Email: rh169@columbia.edu, WWW: http://www.columbia.edtii169.

§Jones School of Management, Rice University, Rm 230, MS 531, 6100 Main Street, Houston TX
77004. Ph: (713) 348-4167, Email: xing@rice.edu.

9336 Sage Hall, Johnson Graduate School of Management, Cornell University, Ithaca NY 14850.
Ph: (607) 255-8729 Email: xz69@cornell.edu, WWW: http://www.johnson.cornell.edu/faculty/pro-
files/xZhang/



Abstract

We examine how volatility risk, both at the aggregate market and individual stock level, is
priced in the cross-section of expected stock returns. We estimate a significantly negative cross-
sectional price of risk for systematic volatility, with a cross-sectional volatility factor earning
-0.87% per month. We find that stocks with high idiosyncratic volatility earn abysmally low
returns. The quintile portfolio with the highest idiosyncratic volatility does not even earn an
average positive total return, and the difference in Fama-French (1993) alpha’s between quintile
portfolios with the lowest and highest idiosyncratic risk is -1.31% per month. We find that
the low returns earned by stocks with high exposure to systematic volatility risk and the low
returns of stocks with high idiosyncratic volatility are not priced by the standard size, value or
momentum factors and are not subsumed by liquidity or volume effects.



1 Introduction

The volatility of stock returns, both at the individual level and at the aggregate level, varies
over time. While there has been extensive study of the relation between aggregate volatility
and expected returns (see, among others, Campbell and Hentschel, 1992; Glosten, Jagannathan
and Runkle, 1993; Scruggs, 1998; Goyal and Santa-Clara, 2003), the question of how volatility
affects the cross-section of expected stock returns has received little attention.

We provide a systematic study of how stochastic volatility is priced in the cross-section of
expected stock returns. Our goals are twofold. First, we cross-sectionally estimate a price of risk
for aggregate market volatility. If the volatility of the market return is a systematic risk factor, an
APT or factor model indicates that aggregate volatility should also be priced in the cross-section
of stocks. We find that innovations to aggregate volatility have a statistically significant negative
price of risk. Economically, a negative premium for systematic volatility risk implies that assets
with positive exposures to aggregate volatility risk pay off in times when market returns are
low. Since equity prices react negatively to positive shocks in aggregate volatility, investors are
willing to pay premiums to hold assets with high exposure to systematic volatility risk. Hence,
assets with high sensitivities to fluctuations in aggregate volatility earn low returns. Our findings
are consistent with many option pricing studies that have also documented negative prices of
aggregate volatility risk. However, all of these option pricing studies estimate the price of
aggregate volatility risk using, at most, only the time-series and a cross-section of options on an
aggregate market index, in addition to returns on the market portfolio.

There are several advantages of using a cross-section of returns on stocks, rather than a
cross-section of options on the market, to estimate the price of risk of aggregate volatility. First,
using the cross-section of returns allows us to create a useful hedging, or mimicking factor
portfolio for aggregate volatility risk. If the price of volatility risk is negative, the zero-cost
hedge portfolio will have average returns that are consistently negative. The portfolio is easy to
construct and reflects only exposure to innovations in aggregate volatility. The second reason
for using the cross-section of stock returns is to gauge the strength of exposure to volatility
risk in individual stocks or portfolios. This approach creates a new set of assets with exposure
to volatility risk that are not options. Hence, performing tests on this new set of assets with
exposure to volatility innovations complements and confirms the findings of the option pricing

1See, for example, Jackwerth and Rubinstein (1996), Bakshi, Cao and Chen (2000), Chernov and Ghysels
(2000), Burashi and Jackwerth (2001), Coval and Shumway (2001), Benzoni (2002), Jones (2002), Pan (2002),
Bakshi and Kapadia (2003) and Eraker, Johannes and Polson (2003).



studies. Finally, using the cross-section allows us to estimate the price of volatility risk control-
ling for other standard cross-sectional effects, such as the size and value effects of Fama and
French (1993), the momentum effect of Jegadeesh and Titman (1993), and the liquidity effect
of Pastor and Stambaugh (2003). Estimating volatility risk controlling for other cross-sectional
factors cannot be done using only a cross-section of options on the market portfolio.

We find strong evidence that systematic volatility risk is priced in the cross-section of stocks.
The difference in average returns between the highest and lowest quintile portfolios sorted by
exposure to volatility innovations is -1.04% per month, and is still statistically significant at
-0.83% per month controlling for the Fama and French (1993) factors. The cross-sectional
volatility risk effect is robust to liquidity effects and is not priced by a momentum factor. We
find that our mimicking factor created to represent exposure to systematic volatility risk is sig-
nificantly priced in the cross-section of stock returns.

A second related goal of this paper is to examine patterns in cross-sectional expected returns
of portfolios formed by ranking on idiosyncratic volatility, measured relative to standard models
of systematic risk. In contrast, recent studies focus only on the average level of firm-level
volatility. For example, Campbell et al. (2001) and Xu and Malkiel (2001) document that
idiosyncratic volatility, relative to the market or to the Fama-French (1993) three-factor model,
has increased over time. Goyal and Santa-Clara (2003) demonstrate that idiosyncratic risk has
positive predictive power for excess market returns. In contrast, we focus on how idiosyncratic
risk is cross-sectionally reflected in expected returns.

Standard asset pricing models predict that idiosyncratic volatility is not priced and thus can-
not influence cross-sectional average returns. However, recent economic theory indicates that
idiosyncratic risk may be positively related to expected returns, if investors demand compensa-
tion for not being able to diversify risk (see Malkiel and Xu, 2002; Jones and Rhodes-Kropf,
2003). Merton (1987) suggests that in an information-segmented market, firms with larger
firm-specific variance require higher returns to compensate for imperfect diversification. Re-
cent behavioral models, like Barberis and Huang (2001) also predict that higher idiosyncratic
volatility stocks should earn higher expected returns. Our results are directly opposite to these
theories. We find that stocks with low idiosyncratic risk deliver high average returns. There is a
strongly significant pattern of over -1.06% per month in the average return difference between
quintile portfolios of lowest and highest idiosyncratic risk, computing idiosyncratic volatility
relative to the Fama-French (1993) model.

Our findings are totally the opposite of Tinic and West (1986) and Malkiel and Xu (2002).



These authors find that portfolios with higher idiosyncratic risk have higher average returns.
However, they do not directly sort stocks based on the measure of interest, idiosyncratic volatil-
ity, nor do they tabulate any significance levels for their idiosyncratic volatility premiums. In-
stead, Tinic and West (1986) work only with 20 portfolios sorted on market beta, while Malkiel
and Xu work only with 100 portfolios sorted on market beta and %ittence, Tinic and West

and Malkiel and Xu miss the strong negative relation between idiosyncratic volatility and ex-
pected returns.

The very low returns we find for high idiosyncratic volatility represent somewhat of a puz-
zle. We outline some potential explanations and investigate if they can explain these puzzling
results. Our results are robust to controlling for value, size, liquidity, volume, dispersion of
analysts’ forecasts, and momentum effects. In particular, we find that the effect is common
to stocks of all sizes, but is strongest among middle-sized, not the smallest-sized, stocks. The
effect persists in both bull and bear markets, recessions and expansions, and volatile and stable
periods. Moreover, we find the effect robust to different formation periods for computing id-
iosyncratic volatility and for different holding periods. We also find that the portfolios sorted
by idiosyncratic volatility have little exposure to systematic volatility risk.

The rest of this paper is organized as follows. In Section 2, we examine how systematic
volatility is priced in the cross-section of stock returns. Section 3 documents that firms with
high idiosyncratic volatility have very low average returns. Finally, Section 4 concludes.

2 Pricing Systematic Volatility in the Cross-Section

2.1 A Simple Model

To motivate the empirical analysis that follows, we start by presenting a model to illustrate how
stochastic volatility might affect the cross-section of equity returns. This simple model is not
intended to provide a complete structural explanation of how aggregate volatility is priced by
agents in the cross-section. Rather, we use the simple model as motivation to illustrate how
stochastic market volatility implies cross-sectional differences in expected returns.

2 Malkiel and Xu (2002) do consider a cross-sectional regression on individual stocks, but instead of using a
measure of an individual stock’s idiosyncratic volatility, they assign a stock’s residual standard deviation to be the
idiosyncratic risk of one of the 100 beta/size portfolios to which that stock belongs each month.



Consider a two-factor model that allows the market volatility to be stochastic:

d m
S g dt + o dW,
St
do" = a'dt+ b"dV; (1)

wheredS;" / S} represents the aggregate market returnaghdepresents the aggregate market
volatility. We assume that the two Weiner processgs anddV; are correlated{\W,dV; = pdt.

The formulation of the drift and volatility o] can be very general. For example, we can
specify o;* to be mean-reverting if we sef® = (6 — 0;*) andb;® = b. In order to derive
closed-form option pricing models, a common specification is to md@el)? as a square-
root process, as in Heston (1993). Since our focus is not on deriving a closed-form option
pricing model, we can allow}* andb;" to take very general forms. Similarly, we do not take
a stand on the functional form of the drift of the market retufhas our focus is on deriving
cross-sectional, rather than aggregate, pricing implications.

Suppose markets are complete and the pricing kernalkes the form:

d
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where we have assumed a constant risk-free rat@ithout loss of generality. To model an
individual stock, we set the return on stacklS; / S} to also follow a two-factor model:

dS? A _ ,
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St

do! = aldt +bdV? (3)

wheredWdW*® = p,;dt and dVdW*® = p,dt. The drifta! and volatility 4! functions can
be functions of stock’s volatility o;. In equation (3), shocks to a stock’s own volatility are
correlated with shocks to the stochastic volatility factor in the pricing kernel (2). This implies
that a stock’s volatility exposure to systematic volatility plays a part in determining that stock’s
expected retura.

By definition of the pricing kernel, the drift term afm.S;) must be zero, therefore, Ito’s
lemma gives the following relation:

Py =Ty

—= =1 Prmi + 7{ Pi (4)
Oy

3 A related specification of (1) to (3) is Brennan, Wang and Xia (2002), who specify the Sharpe ratio of the
market,n;", to assume its own Ornstein-Uhlenbeck process.



In the case of asset returns that can proxydsi /S; anddo?, then?

w ) Nm -

Ny +mp = - m !

0y

w v a> — o'r

Nep+mn, = tb—mtf (5)

t
Substituting into equation (4), we obtain:
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This can be re-written as:

py—ry = B (u —rp) + Bi(al — of'ry), (7)
where , ,
m P pmzﬁ and v P~ Pvi Oy

—1 o7 b

We can interprety to be the multivariate beta of stoékmeasuring exposure to fluctuations
in the market shocklW;. Similarly, 5, measures exposure of stotko innovations in the
market volatilitydV;. Note that expected returns depend on the sensitivity to innovations, not
the sensitivity to the level of either the market or volatility peP se.

In our empirical work, we examine if there is any relationship between a stock’s exposure
to innovations in systematic volatility, as in equation (7). Note that in deriving equation (7),
we assume that market volatility is a traded asset, allowing us to specify the price of risk of
volatility. In our empirical work, we use several proxies to measure innovations in volatility.
Equation (7) implies that stocks with different exposures to innovations in volatility, through
different 3}, coefficients, have different expected excess returns. We will build a mimicking
factor for volatility risk to estimate its risk premium. A further goal is to control not only for
the effect of the market but also control for other known cross-sectional factors (for example,
the Fama and French, 1993, value and size factors).

Equation (7) is in the standard form of an APT or factor model (see Ross, 1976), so that
market volatility risk, throughs?,, is explicitly priced in the cross-section of stock returns. The

4 For at-the-money options, very short holding period returns are approximately linear functions of changes in
implied volatility.
51f we assume that volatility risk is not priceg{( = 0), then equation (7) simplifies to the traditional CAPM

py —ry = B (U —ry).



model is also in the spirit of a Merton (1973) Intertemporal CAPM (I-CAPM). Since market
volatility affects the dynamics of the market return in equation (1), systematic volatility has im-
plications for asset prices in the cross-section, as in equatidh A1) l-CAPM model implies

joint time-series as well as cross-sectional predictability. The goal in our empirical work is to
only examine the cross-sectional pricing implications of equation (7) directly. We do not exam-
ine joint time-series and cross-sectional predictability of asset returns by systematic volatility
because we do not take a stand on the utility function of a representative agent or parameterize
the time-series process of volatility.

2.2 Estimating Aggregate Volatility

We proxy systematic (market-wide) volatility using three estimators. The first estimator is
the standard French, Schwert and Stambaugh (1987) and Schwert and Seguin (1990) measure,
which is the sum of squared daily returns over the pastays, adjusted for first-order autocor-

relations’
Ntfl Nt

1
é'tQ - Nt Z TtQ_z‘ + 2 Z Tri—i | (8)

1=0 =1

wherer; is the return on the market portfolio. We denote the volatility measuia (8) by
SVOL (sample volatility) and comput8V O L using daily returns on the market index from
CRSP. We comput8V O L at a daily frequency by using the last = 22 trading days. The use
of past daily data over the previous month to estimate volatility at timeans that th6 VO L
estimates do not reflect the true market volatilityt atather they represent an average of the
daily volatility from montht — 1 to montht. Nevertheless$'V O L should pick up broad trends
in true volatility movements.

Our second proxy for market volatility is a range-based estimate, following Alizadeh, Brandt
and Diebold (2002):

oy = log < sup ST/UiE'lil ST> , (9)

0<r<1
wheresS; is the level of the S&P500 index over dayWe denote this range-based estimate for
aggregate volatility a®V O L. While easy to computé?V O L suffers from several drawbacks.
First, RVOL is biased downwards because the range on a discrete grid of prices is always less

6 For example, Chen (2002) extends Campbell’s (1993 and 1996) log-linear approximation of Merton (1973), by
allowing for time-varying covariances and stochastic market volatility. Chen shows that any variable that forecasts

future market returns or future market variances must be priced cross-sectionally.
" Our results are unchanged if we omit the autocorrelation terms, as in Schwert (1989).



than the range of a true continuous sample path. Second, the use of equation (9) assumes that
the volatility of the market is constant each day, but changes from day to day. Third, the log
range estimator relies on the assumption that a log volatility process is a good approximation
for the underlying true volatility process. Finally, even if the true volatility process follows a log
process, Andersen and Bollerslev (1998) and Alizadeh, Brandt and Diebold (2002) show that
the efficiency ofRVOL is similar to the efficiency of estimates which use intra-day realized
volatility forecasts of 4-6 hour windows, which provide at most two observations per trading
day. SinceSVOL uses only one observation per trading day, #€é0O L measure should be

better than, but may not be a substantial improvement on, WSi@L.

Our last proxy for volatility is thel’/ X index, which is a Black-Scholes (1973) implied
volatility index constructed by the Chicago Board of Exchange from eight S&P100 index puts
and calls. The/IX index takes into account the American features of the option contracts,
discrete cash dividends and microstructure frictions such as bid-ask spreads/ Xhiadex is
constructed so that it represents the implied volatility on a synthetic at-the-money option con-
tract that has a one month maturity. Whaley (2000) provides further details on the construction
of theVIX index.

At first glance, sincé’ I X is representative of traded option securities whose prices directly
reflect volatility risk, VX might seem to be the most natural measure of changes in aggre-
gate volatility. However, there are three main caveats with ugihg to represent observable
market volatility. First, thel’/X index is Black-Scholes implied volatility, rather than the
true unobservable volatility process. However, we would expect that Black-Scholes volatilities
would be highly correlated with the true volatility process. The second caveat is fiiaimay
also reflect an interaction of a jump and a diffusion (see Eraker, Johannes and Polson, 2003).
However, Bates (1991 and 2000) argues that implied volatilities computed taking into account
jump risk are very close to Black-Scholes implied volatilities.

The third, but most serious, reservation aboutitheX index is thatl’ 7 X combines both
stochastic volatility itself and the stochastic volatility risk premium. Only if the risk premium is
zero or constant would V' 1 X represent only an innovation in volatility. Decomposiing 7 X
into the true innovation in volatility and the risk premium can only be done by writing down a
formal model. The form of the risk premium depends on the parameterization of the volatility
price of risk, the number of factors and the evolution of those factors. Each different model
specification implies a different risk premium. For example, many stochastic volatility option
pricing models parameterize the volatility risk premium to be a linear function of volatility



(see, for example, Chernov and Ghysels, 2000; Benzoni, 2002; Jones, 2002; Pan, 2002). Rather
than imposing a structural form, we use an unadulteratéd series. This has the additional
advantage that our analysis is simple to replicate.

Other common methods of estimating volatility include GARCH-based models and methods
based on intra-day, or high frequency, data (see, for example, Andersen et al., 2003). We do not
use a GARCH model because the parameters of the GARCH process must be estimated before
computing the implied innovations in the variances. Hence, this method entails a look-ahead
bias if the full sample is used. When we form portfolios, it is important that we form portfolios
only using only data available as of the formation date. If a rolling GARCH estimator is used
to avoid look-ahead bias, the time-periods near the beginning of the sample suffer from very
poor estimates of the GARCH process. While Andersen et al. (2003) formally justify the use of
the realized sample volatility measured with intra-day data as a highly efficient volatility proxy,
intra-day data on market returns are not readily available, making this estimation method hard
to implement. In particular, intra-day data are collected only for individual stocks and the main
source of these data, the TAQ database, starts only in 1993.

We concentrate on using the sample period from January 1986 to December 2000. This is
because the data for thé/ X series begins in January 1986, and we would like to compare all
our series on a common sample period. Nevertheless, we also comment on the sample period
July 1963 to December 2000 f61/OL and RVOL.

Table 1 presents some summary statisticsfdO L, RVOL andV I X at a daily frequency.

The annualized mean 6fVOL (RVOL) is 0.0099 x v/250 = 16%, (0.0120 x /250 = 19%).

The mean of’/.X is higher than both these two measures, at 21%. The higher average of
VIX volatility indicates that it is a biased forecast of realized future volatility. The bias may
reflect a risk premium for stochastic volatility, a market inefficiency or a Peso-prdbl&ime
annualized standard deviations.®¥V O L, andV I X are approximately equal, at 9% and 8%,
but the annualized standard deviationrdf O L is higher, at 14%. All three series are negatively
correlated with the market return, witRl’OL (V' 1 .X) having a -23% (-18%) correlation. The
correlation ofSVOL with the market is noticeably less, at only -4%. The low correlation of
SVOL is due to the fact that a large negative movement in returns has only a 1/22th weight
in the computation o6V O L from equation (8), whereas the increase in volatility is reflected
more immediately byRVOL andV I X.

8 See, among many others, Day and Lewis (1992), Canina and Figlewski (1993), Lamoureux and Lastrapes
(1993), Blair, Poon and Taylor (2001), Poteshman (2000) and Chernov (2002).



We graph the three volatility measures in Figure 1, which annualizes each volatility measure
so that they are comparable. Overall, all three measures share the same trends. In particular,
each series has two noticeable spikes. The first spike shows the increase in implied volatili-
ties after the 1987 crash, and the second spike occurs in 1998 during the Russian default, the
emerging markets crises, and the bailout of Long Term Capital Management. Figure 1 shows
that whileSVOL andV [ X are fairly smooth series (autocorrelations of 98% and 94%, respec-
tively at at a daily frequency), thBV O L measure is much less smooth (the daily autocorrela-
tion of RVOL is 49%). The more volatile range-based measure also magnifies the movements
in volatility measured bysVOL andV I X.

To measure daily innovations in aggregate volatility, we compute daily chang83di,
daily changes ilRVOL or daily changes in//X. We denote these measures/aSVOL,
ARVOL or AVIX, respectively. From equation (8) (and ignoring the autocorrelation term),
ASVOL effectively takes the difference between the squared market rettamdtthe squared
market return 22 trading days prior to timeHence, the time-series of dailySV OL effec-
tively measures monthly innovations in volatility at timeln contrast ARVOL and AV IX
reflect daily changes in volatility movements and may be better estimates of changes in true
market volatility. In particularAVIX reflects a daily change in implied option volatilities.
NeverthelessASVOL, ARVOL andAVIX are all quite highly correlated with each other.

For example, Table 1 reports that the correlatiod\éf / X with ASVOL (ARVOL) is 45%
(39%).

In Table 1, all the estimates for daily innovations in volatility have strong negative corre-
lations with the market return. The correlations with the marketasd’ OL, ARVOL and
AV IX are -25%, -26% and -64%, respectively. Hence, when a positive volatility shock arrives,
the market excess return decreases. The best example of this effect is the increase in volatility
over 1987 in Figure 1, coinciding with the large negative returns of the market over this pe-
riod. Table 1 shows one source of discrepancy betwegW O L and the two other estimators
ASVOL and AVIX. While ASVOL and AV IX have very low autocorrelations (7% and
-7%, respectively) ARVOL has a strong negative autocorrelation of -43%. In fa&t,OL
andA RV OL also have almost the same standard deviation. This is due to the large movements
in RVOL, which is shown in Figure 1.



2.3 Portfolios Sorted by Exposure to Systematic Volatility

Equation (7) predicts that firms with different sensitivities (measured by betas) to innovations in
systematic volatility should have different expected excess returns. Based on this implication,
we sort firms into portfolios according to their sensitivities to systematic volatility. If stochas-
tic volatility risk is priced, the average returns on these volatility sensitivity-sorted portfolios
should be different. Our first step is to check that firms with different sensitivities to market
volatility innovations indeed have different average returns.

Equation (7) suggests estimating the sensitivities of stacksystematic volatility in the
following regressions:

ry = o+ Bykr - MKT, + Bagvor - ASVOL, + €}
ry = o + Biygr MKT, + Bapyor, - ARVOL; + ¢
ry = o+ Biygr MKT, + Bayix - AVIX, + ¢} (10)

wherer! is firm i's excess return andl/ KT is the market excess return. Equation (10) proxies
the innovation in market volatilitydV; in equation (1)) byASVOL, ARVOL, or AVIX.

The coefficients?y s o1, Barvor @nd Bh,x represent the sensitivity of firriis returns to
innovations in market volatility, measured by these proxies. Note that, as equation (7) suggests,
we control for the effect of the market in computing the volatility betas in equation (10).

To form portfolios, we run regression (10) on daily excess returns over the previous month
for each firm with more than 17 daily observations within that month on all stocks on AMEX,
NASDAQ and the NYSE. At the end of each month, we sort the stocks into quintiles, based
on the value of th&8asvor, Barvor Of Bavrx coefficients. Firms in quintile 1 (5) have the
lowest (highest) coefficients. Within each quintile portfolio, we value-weight the stocks. If
volatility risk is priced cross-sectionally, the average returns of these quintile portfolios should
be different.

Table 2 reports various summary statistics for quintile portfolios sorted by exposure to ag-
gregate volatility shocks. If the negative price of systematic volatility risk found by the option
pricing studies is reflected in the cross-section, we should see lower average returns with higher
coefficients of84 sv-or, Barvor OF Bavrx- We turn first to the portfolios sorted byxsvor.-

The Basvor, portfolios have little differences in spreads or alpha’s, relative to the CAPM or
to the Fama-French (1993) model (FF-3 hereafter), reported in the last two columns. This is
not surprising since we know thatSV OL is potentially a poor measure for daily changes in
stochastic volatility.

10



We next turn to the quintile portfolios sorted bY zyor. Quintiles 1-4 all have higher aver-
age returns than quintile 5, and the 5-1 spread in average returns between the quintile portfolios
with the lowest and highesia gy o, values is -0.42% per month. When we control for the
Fama-French factors, the 5-1 alpha is -0.39% per month. While the negative point estimates of
the 5-1 spread in average returns or alpha’s are consistent with a negative price of volatility risk,
the spreads are statistically insignificant at the 5% marginal level of significance using robust
Newey-West (1987) t-statistics. The sample period of Table 2 is from January 1986 to Decem-
ber 2000. If we use more data from July 1963 to December 2000, for more power, we still
cannot reject that the 5-1 difference in alphas or expected returns fopkeity, andSBarvor
portfolios are equal to zero.

We now turn to our last volatility proxyAV I X, which directly reflects the volatility of the
market portfolio priced in option contracts. The average returns of the quintile portfolios are
monotonically decreasing from 1.64% per month for l6xy -, x stocks to 0.60% per month for
high Gavrx stocks. The 5-1 spread in average returns between the quintile portfolios with the
highest and lowesfay ;x coefficients is -1.04% per month. This dramatic spread in average
returns does not seem to be due to patterns in size or book-to-market characteristics. In the two
last columns of Table 2, we compute alpha’s relative to the CAPM and FF-3. Controlling for
the M KT factor only exacerbates the 5-1 spread (from -1.04% to -1.15% per month), while
controlling for the FF-3 model decreases the 5-1 spread to -0.83% per month. Both the CAPM
and FF-3 alpha’s are significant at the 1% level using robust t-statistics.

One curious pattern about the average returns and the alpha’s fox{he quintile port-
folios is that the average returns and alpha’s for quintiles 1-4 are approximately the same, with
a slight downward trend. However, there is a dramatic fall in the average return and alpha for
quintile 5. This implies that while there is a monotonic relation between incregsing, load-
ings and decreasing average returns and alpha’s, the biggest effect is for stocks with the highest
values ofGayrx, Which have extremely low returns or alpha’s. This category of stocks is not a
small proportion of the market: the percentage market capitalization of quintile 5 is 7.4%. Quin-
tile 5 portfolio’s turnover is also not substantially higher than the other portfolios; its average
turnover is 73%, of the same order of magnitude as decile portfolios sorted on book-to-market
ratios.

The results of the sorts afwy 7 x confirm the negative price of volatility risk estimated by
option pricing studies. The higher thik ;x coefficient, the higher is the exposure of a stock
to systematic volatility risk. Since stocks with highéxky;x loadings have lower expected
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returns, this is consistent with stochastic volatility carrying a negative risk premium. However,
before we construct a mimicking factor for cross-sectional volatility risk, we first ensure that
theGayx effectis robust to other known factors that affect the cross-section of average returns.

The FF-3 alpha’s in Table 2 show that the very large spread in average returns between
the highest and lowestay ;x quintiles is not due to size or book-to-market effects. However,
periods of very high volatility tend to coincide with periods of market illiquidity. Chordia et
al. (2001), Jones (2002) an@$tor and Stambaugh (2003) all comment that such periods often
coincide with market downturns. For example, during the 1987 crash and the 1998 Russian debt
and subsequent emerging markets crises, realized market returns and liquidity werastow. P
and Stambaugh demonstrate that stocks with high liquidity betas have high expected returns.
We now check that the spread in average returns reflecting sensitivities to volatility risk is not
due to liquidity effects. Panel A of Table 3 reports the results.

To control for liquidity, we first sort stocks into five quintiles based on their historical lig-
uidity betas,3%, computed following Bstor and Stambaugh (2003). Then within each quintile,
we sort stocks into five quintiles based on th&is ; x coefficient loadings. These portfolios are
rebalanced monthly and are value-weighted. After formingbtixe5 liquidity beta andSay 7 x
portfolios, we average the returns of eatly ; x quintile over the five liquidity beta portfolios.
Thus, these quintilgy ;x portfolios control for differences in liquidity.

Table 3, Panel A shows that controlling for liquidity reduces the 5-1 difference in average
returns from -1.04% per month in Table 2 to -0.68% per month. In particular, after controlling
for liquidity, we still observe the monotonically decreasing pattern of average returns of the
Bavrix quintile portfolios. The liquidity control also does not remove the sharp decrease in the
average return of the fiftBa 7 x quintile. When we control for the CAPM (FF-3 model), the
alpha becomes -0.73% (-0.55%) per month. Both these alpha’s are significant at the 5% level.
We also observe the same pattern of very low returns for the highesk stocks within each
liquidity beta quintile, before averaging across the liquidity beta portfolios, but do not report
these results to save on space. Hence, liquidity effects cannot account for the spread in returns
resulting from sensitivity to aggregate volatility risk.

Panel B reports the same exercise except we control for volume effects rather than liquidity.
Gervais, Kaniel and Mingelgrin (2001) find that stocks with high trading volume earn higher
average returns than stocks with low trading volume. It could be that the low average returns
(and alpha’s) we find for stocks with higbny;x loadings are just stocks with low volume.
Panel B shows that this is not the case. In Panel B, we control for volume the same way that we
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control for liquidity in Panel A, except we first sort stocks into quintiles based on their trading
volume (rather than @&stor-Stambaugh liquidity betas). Before averaging across the volume
portfolios, we also observe the same pattern of low returns to figh x stocks within each
volume quintile (not reported). Hence, the volume effect is also not responsible for the large
spread in average returns and alpha’s between stocks with low ang high sensitivities.

2.4 A Cross-Sectional Volatility Factor

Constructing the VO L Factor

The pricing equation (7) from our simple model motivates a linear factor model for stofck
the form:

E(r}) = & + By - At + Bavix - Avor, (11)

whereE(r?) is the expected excess return of stacky, - is the market risk premium and, o,

is a risk premium for the aggregate volatility risk factor. If the model is correctly specified, then

o' should be zero. In this section, we build a mimicking factor for stochastic volatility exposure,
allowing us to cross-sectionally estimate the price of risk for stochastic volatility. The advantage
of constructing a mimicking factor, which we calOL, rather than just using\V' 7 X is that

AV I X does not represent the realized return on a tradable asset. By creating a tradeable factor,
we can interpret alpha’s from standard time-series factor regressions as well as directly estimate
the volatility risk premium cross-sectionally.

Our volatility factor,JVOL, is formed as follows. Each month, we rank stocks based on their
Oavix coefficients into three groups: low, medium and hjgly ;x groups with 33.3% and
66.7% cutoffs. We calculate monthly value-weighted returns for each of these three portfolios.
The VOL factor is formed as the return difference between the high;x group and the
low Gavrx group. Hence, thé”OL factor goes long stocks with high volatility innovation
sensitivities, which have low expected returns, and shorts stocks with low volatility innovation
sensitivities, which have high expected returns.

Table 4 lists some summary statistics for 1@ L factor. TheVVOL factor has a monthly
mean return of -0.58% per month, and the mean is statistically significant at the 1% marginal
level of significance. Table 4 also lists the correlation/@d L with the excess market return
MKT, the Fama and French (1993) size and value factar&B and HM L, andUM D, a
momentum factor constructed by Kenneth French. The momentum faétab is constructed
in a similar way to Carhart (1996)’'s momentum factor, which goes long stocks with past high
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returns and shorts stocks with past low returns. The correlatidrCaf with the M K'T'is 16%,
which is smaller in magnitude than the respective correlatios8\éf3, H M L andU M D with

M KT over our sample period. The low correlation results from controlling for¥h& T’
factor in our initial computation ofy ;x in the regression (10). However, oUiO L factor is
relatively highly correlated witty M B, at 48%, andd M L at -40%. This is consistent with the
results in Table 2, where the alpha’s from the FF-3 model for the quititije y portfolios are
slightly smaller than the raw average returns.

Table 4 also reports the results of regressingL onto various factors in a time-series
regression. Controlling for th&/ KT factor decreases thefrom -0.58% per month to -0.68%
per month. The FF-3 model reduces this magnitude to -0.46% per month. Nevertheless, the
alpha is still significant at the 5% level. When we addth& D momentum factor, the loading
on UMD is zero, and the point estimate of the alpha is almost unchanged, decreasing by only
1 basis point to -0.47% per month. However, the extra noise addéd\by causes th& O L
alpha to be borderline significant at the 5% level.

In Figure 2, we plot the cumulative returns of th& L factor from January 1986 to De-
cember 2000. Over the sample, no particular time period drives the significantly negative mean
(-0.58% per month) of th& O L factor. The large increases in/ X after the 1987 crash and
during 1998 do coincide with negative returns of @ L factor, but these are not unusually
large.

Pricing Bavrx Sorted Portfolios

As a check on whether théO L factor captures the return premium between stocks with high
Bavix loadings and stocks with lowa 7y loadings, Table 5 examinesWO L can price the
quintile portfolios sorted oAy ;. The table reports the portfolio alpha’s and the p-value from
a Gibbons-Ross-Shanken (1989) (GRS) joint test that the alpha’s are equal to zero. The alpha’s
from the CAPM and FF-3 model are repeated from the last two columns of Table 2.

Table 5 shows that the standard models, the CAPM, FF-3, and FF-3 augmented with a
U M D momentum factor cannot account for the spread in returns ofthey portfolios. For
all these models, we systematically reject the hypothesis that the alpha’s of the portfolios are
jointly equal to zero at a 5% level. In contrast, all the models WithL pass the GRS test
at a 10% marginal level of significance. The alpha’s of the difference between the highest and
lowest Ay 7 x portfolios are -1.15% per month for the CAPM regression. We can decrease
this magnitude to -40 basis points per month by includingWtlieL factor. However, the 5-1
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difference is still statistically significant with tHéO L factor, despite the failure to reject a GRS
test.

It is instructive to examine the factor loadings in Panel B of Table 5 for the most com-
prehensive factor specification with W K'7', SM B, HM L, UMD andV OL factors. The
market loadings, although highly significant, are fairly flat across the portfolios. STiiés
loadings have a U-shape, picking up the lowest and the highgsty portfolios. Similarly,
HML has an inverted U-shape, with lowest loadings on the lowest and highest portfo-
lios. Hence, neithe6 M B nor HM L can account for the spread between the 5-1 portfolios.
The point statistics of the momentum factor loadings are almost zero and have no pattern. In
contrast, the loadings oviO L increase monotonically from -0.54 for the lowest, ;x port-
folio to 0.57 to the highesfay ;x portfolio. Hence, exposure to tHéO L factor accounts for
1.11 x —0.58% = —0.64% per month of the raw -1.04% per month average retur@.L is the
only factor whose (increasing) loadings reflect the pattern in (decreasing) returns from low to
high Bay 7 x quintile portfolios.

Fama-MacBeth (1973) Estimates of the Price of Volatility Risk

Equations (7) and (11) of the linear factor model imply a standard cross-sectional regression.
If excess returns of assets are regressed omthex coefficients of those assets, then there
should be a significant coefficient on thig;x loadings. This coefficient\y o, is the price
of risk of stochastic volatility. To estimat&, o, in the cross-section, equations (7) and (11)
suggest the need to create a set of assets whose market beta adbetas are sufficiently
disperse. We construct 25 portfolios sorteddayx+ andSay;x as follows. At the end of each
month, we sort stocks based on, xr, computed by a univariate regression of excess stock
returns on excess market returns over the past month using daily data. We compixe the
loadings using the bivariate regression (10) also using daily data over the past month. Stocks
are ranked first into quintiles based Gy x+ and then within eacl¥,, -+ quintile into Sayrx
quintiles.

Panel A of Table 6 reports FF-3 alpha’s of theseigh.r x Gavrx set of portfolios. There
is some heterogeneity in the alpha’s, but the 5-1 difference irBthe x quintiles are always
negative. For the largeh, - quintiles 4 and 5, the alpha’s are almost monotdniscross each
Buxr quintile, it is always the fifthiay; x quintile that has the steepest drop in returns. Hence,
this finer sort of stocks based o, - andSay 1 x coefficients has the same qualitative pattern

9 The pattern in the means of raw returns is qualitatively similar to the the pattern of FF-3 alpha’s.
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of alpha’s as the quintil8ay;x portfolios in Table 2, which do not control for the market beta.

We use the base assets of Panel A to estimate factor premiums in Panel B, following the
two-step procedure of Fama-MacBeth (1973). In addition to the standard FF-8 &hd
factors, we include the @tor-Stambaugh (2003) liquidity factak,/(). Although theLIQ
factor is non-traded, we can still include it in the cross-sectional regression and examine the
statistical significance of its premium. Panel B shows that the premiums of the standard factors
(MKT, SMB, HM L andU M D) are estimated very imprecisely with this set of base assets.
The premium onSM B is consistently estimated to be negative because the size strategy has
performed poorly from the 1980’s onwards. The low and insignificant premiurdiS\oD and
LIQ illustrate that the spreads in expected returns ofike;x portfolios are not related to
momentum or liquidity effects.

WhenV OL is included in the cross-sectional regressions, it is the only factor estimated to
have a significant loading. Its premium of around -0.83% per month is of the same order of
magnitude as the time-series mearV/@d L (-0.58% per month). Th& O L premium is signifi-
cant in all the various specifications of including different factors. The cross-seciidisalso
increase significantly oncéOL is included. For example, th&? of the FF-3 specification is
50%, and it increases to 67% when #é L factor is included. Hence, théOL premium is
robust to size, value, momentum and liquidity effects. We consider'thé factor to be a new
cross-sectional factor representing systematic volatility risk.

The VOL Factor and Option Returns

The VOL factor reflects exposure to systematic volatility risk and is constructed using the
cross-section of stock returns. An alternative way to construct a traded asset reflecting volatility
risk is to consider option returns. To construct a mimicking factor for systematic volatility risk
from cross-sectional options is infeasible because of low liquidity and large bid-ask spreads.
However, it is possible to construct a zero-delta straddle position in options on the aggregate
market (S&P 100 options) which has zero market exposure but provides exposure to systematic
volatility. This is precisely what Coval and Shumway (2001) do. They approximate daily
at-the-money straddle returns by taking a weighted average of the zero-beta straddle returns
corresponding to strike prices immediately above and below each day’s opening level of the
S&P 100 and cumulate these daily returns each month. We denote this faci@riagfor
“straddle returns”).

It is reassuring that over the 1986 to 1995 sample period used by Coval and Shumway, the
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ST R andV OL factors have a positive correlation of 19%. SitBR andV O L both measure
systematic volatility exposure, a time-series regressiosi/ok on VOL, or vice versa, should
yield significant loadings. Unfortunately, Table 7 shows that whkil&? andV"O L load on each
other positively, the coefficient loadings are insignificant. The adjuBtésiof the regressions
are also only 3%. The reason for the poor correspondence is thelf tReeturns are extremely
volatile, compared with the low volatility df O L. The volatility of ST R is 35.48% per month
(122.9% per annum), whereas Table 4 shows that the volatility(af. is only 3.29% per month
(11.40% per annum).

Table 7 shows that whenO L is regressed ont87 R, the constant (-0.28%) is insignificant.

This is what we would expect W OL and STR are able to price each other. However, a
regression ofST R onto VOL only reduces the magnitude of the r&§'R average return of
-11.02% per month to -9.96% per month, which is still significant at the 5% level. Since the
zero-beta straddle positions are only approximately delta-neutral, because the approximations
rely on a Black-Scholes (1973) formula to compute the weights in the option positions, it is
likely that theST'R returns still incorporate some residudl K'T" exposure. When th&/ KT

factor is added, the alpha becomes insignificant and the adjiétadtreases to 15%.

While ST R has a very impressive negative return, its large volatility means a person selling
straddles can easily go bankrupt, which would have happened during the 1987 crash where the
monthly return over October 1987 was 285%. In contrast, the low volatility ©f. makes
it a less risky trading strategy. Another advantagé/éfL over STR is that taking straddle
positions requires daily or weekly rebalancing (done by Coval and Shumway, 2001), whereas
VOL is re-balanced at a monthly frequency. Finally, th@ L factor is easy to construct as the
V' IX index s publicly available. The main source of option data, the Berkeley Option Database
has reliable data only from the late 1980’s and stops in 1995, and is no longer made available
for research purposes.

3 Pricing Idiosyncratic Volatility in the Cross-Section

So far, we have examined how systematic volatility risk affects cross-sectional average returns.
In this section, we investigate if the idiosyncratic volatility of stocks generates cross-sectional
patterns of average returns. Naturally, if the factors driving systematic risk are correctly spec-
ified, we should see no reward for bearing idiosyncratic risk. While we concentrate our anal-
ysis on using the Fama-French (1993) model for systematic risk, we also examine idiosyn-
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cratic volatility relative to the traditional CAPM and total volatility (without decomposing total
volatility into systematic and idiosyncratic components).

3.1 Estimating Idiosyncratic Volatility

To measure idiosyncratic volatility for an individual stock, we run either a CAPM or Fama-
French (1993) regression:

ry = o+ ByxrMKT, +¢)
re = &'+ BygrMET, + BoypSMB, + By HM L, + €. (12)

Hence, we measure idiosyncratic volatilitM) relative to the CAPM or FF-3. Given

the failure of the CAPM to explain cross-sectional returns and the ubiquity of FF-3 in empirical
financial applications, we concentrate on idiosyncratic volatility measured relative to the Fama-
French model.

To examine trading strategies based on idiosyncratic volatility, we describe trading strategies
based on a formation period &f months, a waiting period af/ months and then a holding
period of N months. We can describe @M/ /N strategy as follows. At month we compute
idiosyncratic volatilities from the regression (12) on daily data over.anonth period from
montht — L. — M to montht — M. At time ¢, we construct value-weighted portfolios based
on these idiosyncratic volatilities and hold these portfolios¥omonths. We concentrate our
analysis on the /0/1 strategy, but examine robustness to various choicek, af/ and N.

For the1/0/1 strategy, we simply sort stocks into quintile portfolios based on their level of
idiosyncratic volatility computed using daily returns over the past month, and hold these value-
weighted portfolios for 1 month. The portfolios are rebalanced each month.

The construction of thé./M /N portfolios for L > 1 and N > 1 is similar to Jegadeesh
and Titman (1993), except our portfolios are value-weighted. For example, to congtfucé
quintile portfolios, each month we construct a value-weighted portfolio based on idiosyncratic
volatility computed on 12-months of returns ending one month prior. Similarly, we form a
value-weighted portfolio based on 12-months of returns ending two months prior, three months
prior, and so on up to six months prior. Each of these portfolios is value-weighted. We then
take the simple average of these six portfolios. Hence, each quintile portfolio changes 1/6th of
its composition each month, where each 1/6th part of the portfolio consists of a value-weighted
portfolio. The first (fifth) quintile portfolio consists of 1/6th of the lowest value-weighted (high-
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est) idiosyncratic stocks from one month ago, 1/6th of the value-weighted lowest (highest) id-
iosyncratic stocks two months ago, etc.

3.2 Patterns in Average Returns for Volatility Risk

Table 8 reports average returns of total and idiosyncratic volatility sorted portfolios, using a
1/0/1 strategy. We turn first to the portfolios sorted by total volatility, without any control
for systematic risk. Table 8 shows that average returns increase from 1.06% per month going
from quintile 1 (low total volatility stocks) to 1.22% per month for quintile 3. Then, average
returns drop. Quintile 5, which comprises stocks with the highest total volatility, experiences a
dramatic decrease in average total returns (only 0.09% per month). A FF-3 alpha, reported in
the last column, for quintile 5 is -1.16% per month, and while highly significant, it is the only
portfolio that has a significant alpha. The large spread in average returns between quintiles 1
and 5 (-0.97% per month) may just be due to inappropriate controls for systematic risk.

The next two panels of Table 8 report average returns of stocks sorted by idiosyncratic
volatility measured relative to the CAPM and FF-3 model, respectifeln interesting pattern
is that there is a reward in raw average returns for increasing idiosyncratic volatility, but this
does not hold for stocks with the highest idiosyncratic volatilities in quintiles 4 and 5. In both the
CAPM and FF-3 cases, the low average returns of quintiles 4 and 5 are exacerbated, compared
to the sorts on total volatility, and their alpha’s are highly statistically significant. In particular,
the average returns of quintile 5 are -1 basis point (-2 basis points) for idiosyncratic volatility
relative to the CAPM (FF-3). Stocks with high idiosyncratic risk have abysmally low average
returns.

Let us focus attention on sorts by idiosyncratic volatility relative to FF-3, which is reported
in the last panel of Table 8. The difference in raw average returns between quintile 1 and 5 is a
very large -1.06% per month. Controlling for the CAPM (FF-3) model increases the difference
in magnitude to -1.38% (-1.31%) per month. Clearly, the FF-3 model cannot account for all
systematic risk.

Table 8 shows distinct patterns in the size and book-to-market ratios of the FF-3 idiosyn-
cratic volatility portfolios. Stocks with low (high) idiosyncratic volatility are generally large
(small) stocks and have low (high) book-to-market ratios. The very low returns of quintile 5

101f we compute idiosyncratic risk relative to a factor model withK 7" and VOL factors, the patterns in
average returns and alpha’s in Table 8 are qualitatively preserved. The 5-1 alpha’s are smaller in magnitude than
for the case of idiosyncratic volatility relative to the CAPM or FF-3 models, but the alpha’s are still significant.
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are opposite to what the FF-3 model predicts. Hence, the stocks with the highest idiosyncratic
volatilities, since they are small and are value stocks, should have the highest average returns.
Nevertheless, there are three major concerns major concerns with the anomalously low average
returns of quintile 5. First, although quintile 5 contains 20% of the stocks sorted by idiosyncratic
volatility, quintile 5 represents only a small proportion of the market (only 1.9% on average).
Hence, stocks with high idiosyncratic risk consist, on average, of a small fraction of the mar-
ket. Are these patterns repeated if we only consider large stocks, or only stocks traded on the
NYSE? Second, illiquidity distortions among small stocks are pervasive, so we should control
for liquidity. Third, are these patterns robust to different formation and holding periods? We
now check how robust our findings are.

3.3 Robustness

Using Only NYSE Stocks

Table 9 examines robustness of duf/1 portfolio formation strategy for FF-3 idiosyncratic
volatility portfolio sorts, controlling for various effects. The table reports FF-3 alpha’s, and the
difference in FF-3 alpha’s between the quintile portfolios with the lowest and highest idiosyn-
cratic risks. First, we rank stocks based on idiosyncratic volatility using only NYSE stocks.
Excluding NASDAQ and AMEX has no effect on our results. The highest quintile of idiosyn-
cratic volatility stocks has a FF-3 alpha of -0.60% per month and the 5-1 difference is still high,
at -0.66% per month, which is significant at the 1% level.

Controlling for Size and Book-to-Market

We control for size by first forming quintile portfolios ranked on size and then within each
size quintile, we sort stocks based into quintile portfolios ranked on FF-3 idiosyncratic volatil-
ity. Within each size quintile, quintile 5 with the highest idiosyncratic volatility stocks, still
has a dramatically lower alpha. The effect is not most pronounced among the smallest stocks.
Rather, quintiles 2-4 have the largest 5-1 differences in FF-3 alpha’s, at -1.91%, -1.61% and
-0.86% per month, respectively. The average market capitalization of quintiles 2-4 is, on av-
erage, approximately 21% of the market. The t-statistics of these alpha’s are all above 4.5 in
absolute magnitude. The 5-1 alpha’s for the smallest and largest quintiles are actually statisti-
cally insignificant at the 5% level. Hence, it is definitely not small stocks that are driving these
results. We can control for size by averaging the returns of the quintile idiosyncratic volatility
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portfolios over the five size portfolios. Controlling for size, the 5-1 difference in FF-3 alpha’s
is still -1.04% per month.

The remainder of Table 9 repeats the explicit double-sort characteristic controls for book-to-
market ratios, liquidity, volume, dispersion in analysts’ forecasts, and momentum. In each case,
we first sort stocks into quintiles based on the characteristic and then, within each quintile we
sort stocks based on FF-3 idiosyncratic volatility. To control for the characteristic, we average
the returns over each of the five characteristic portfolios.

We turn next to the book-to-market control. The value effect is concentrated among small
stocks. Perhaps our idiosyncratic volatility portfolios are primarily composed of growth stocks,
with lower average returns than value stocks. This is not the case. When we control for the
book-to-market effect, stocks with the highest idiosyncratic volatility still have very low FF-3
alpha’s, and the 5-1 difference in alpha’s is -80% per month, and highly significant.

Controlling for Liquidity and Volume

We use the historical liquidity betas ofBtor and Stambaugh (2003) to proxy for liquidity.
Controlling for liquidity does not remove the low average returns of high idiosyncratic volatility
stocks. Quintile 5 still has very low average returns, with a FF-3 alpha of -1.01% per month.
The 5-1 difference in alpha’s is -1.08% per month, only slightly less in magnitude than the 5-1
difference in alpha’s without the liquidity control in Table 8 (-1.31% per month). We control for
volume because Lee and Swaminathan (2000) argue that high volume proxies for differences
in opinion, which predicts lower returns. When we control for volume, the 5-1 difference in
alpha’s remains significant at the 1% level at -1.22% per month. Hence, the low returns on high
idiosyncratic risk stocks are robust to controlling for liquidity and volume.

Controlling for Dispersion in Analysts’ Forecasts

Diether, Malloy and Scherbina (2002) provide evidence that stocks with higher dispersion in

analysts’ earnings forecasts have lower average returns than stocks with low dispersion of an-
alysts’ forecasts. Stocks with high dispersion in analysts’ forecasts tend to be more volatile
stocks. If we use the sample period 1983-2000, similar to Diether, Malloy and Scherbina, we
can test this hypothesis by performing a characteristic control for the dispersion of analysts’
forecasts. We take the quintile portfolios of stocks sorted on increasing dispersion of analysts’
forecasts (Table VI of Diether, Malloy and Scherbina, 2002, p2128) and within each quintile

sort stocks on idiosyncratic volatility. Note that this universe of stocks are mostly large firms,
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where the idiosyncratic volatility effect is weak, because analysts usually do not make forecasts
for small firms.

The line labelled 'Controlling for Dispersion of Analysts’ Forecasts’ in Table 8 presents the
results for averaging the idiosyncratic volatility portfolios across the forecast dispersion quin-
tiles. The 5-1 difference in alpha’s is still -0.39% per month, with a robust t-statistic of -2.09.
While the shorter sample period may reduce power, the dispersion of analysts’ forecasts reduces
the non-controlled 5-1 alpha considerably (from -1.31% per month). However, dispersion in an-
alysts’ forecasts cannot account for all of the low returns to stocks with high idiosyncratic risk.

We can also turn the question around and ask if the low average returns of stocks with high
dispersion of analysts’ forecasts is due to the low returns of stocks with high idiosyncratic risk.
We first sort stocks into quintiles on the basis of idiosyncratic volatility, and then within each
guintile sort stocks into portfolios ranked by forecast dispersion, using the set of firms used by
Diether, Malloy and Scherbina. We compute the difference in FF-3 alpha’s for stocks with high
and low forecast dispersion, controlling for idiosyncratic volatility by averaging stocks over the
idiosyncratic volatility quintiles. The 5-1 FF-3 alpha for forecast dispersion, controlling for
idiosyncratic volatility, is -0.36% per month, which is insignificant at the 5% level (the robust
t-statistic is -1.47).

Controlling for Momentum

One possibility of the low returns of high idiosyncratic risk stocks could be due to momentum.

In particular, stocks with very low returns have very high volatility, by definition, and these
stocks continue to have low returns (see Jegadeesh and Titman, 1993). Of course, stocks that
are past winners also have very high volatility, but loser stocks could be over-represented in
the high idiosyncratic risk quintile. The last row of Table 8 shows that this is not the case.
Controlling for returns over the past month does not remove the very low FF-3 alpha of quintile

5 (-0.59% per month), and the 5-1 difference in alpha’s is still -0.66% per month, which is
statistically significant at the 1% level. What is surprising is that even the 5-1 difference in the
raw average returns is very large in magnitude, at -0.84% per month, with a t-statistic of -3.76.
Clearly, momentum cannot account for these patterns.

3.4 Can we Explain the Negative Premium for Idiosyncratic Risk?

A possible explanation for the large negative returns of high idiosyncratic volatility stocks is
that stocks with large idiosyncratic risk relative to FF-3 have larger exposure to movements in

22



systematic volatility. This is not unreasonable, since if market volatility increases, individual
stock volatility might also increase. Table 10 tries to price the FF-3 idiosyncratic volatility
quintiles with theV’OL factor. Panel A shows that including th&) L factor into the standard
linear factor specifications reduces the difference in alpha’s between portfolios with the highest
and lowest idiosyncratic risk. For example, for the FF-3 model (FF-3 model augmented with
UM D), the 5-1 alpha is -1.43% (-1.36%) per month. This is reduced in magnitude to -1.34%
(-1.26%) per month includiny O L. However, the reductions are small and amount to approx-
imately 10 basis points per month. All of the factor specifications fail to pass a GRS test, with
p-values of less than 1%.

We report factor loadings of the ful/ K'T', SM B, UM D andV O L specification in Panel
B. Only HM L andV OL have factor loadings that go in the correct direction from quintile 1
(high returns) to 5 (low returns). The spreaddn// L factor loadings i9.17 — (—0.42) = 0.59.
However, the average return éf M L over the 1986-2000 sample period is -4 basis points
per month, sai M L’s contribution to explaining the large negative 5-1 spread is negligible.
While the mean of/OL is -0.58% per month (see Table 4), the spread in the factor loadings
of VOL is only —0.13 — .07 = —0.20, so VOL only reduces the large negative alpha by
—0.20 x —0.58% = 0.12% per month. Hence, idiosyncratic volatility risk accounts for some,
but cannot remove, the anomalous low returns of stocks with high idiosyncratic risk.

If standard factor models cannot price idiosyncratic volatility risk and exposure to system-
atic volatility also cannot explain the low returns to high idiosyncratic risk stocks, are there
other explanations? To help disentangle various stories, Table 11 reports FF-3 alpha’s of other
L/M/N strategies, with ai.-month formation period that endéd months ago prior to time
and is held forV-months. First, we can rule out possible contemporaneous measurement errors
through forming the portfolios using data ending one-month priér= 1). In the1/1/1 strat-
egy, the 5-1 difference in FF-3 alpha’s is still -0.82% per month, which is significant at the 1%
level.

One possible behavioral explanation for our results is that higher idiosyncratic volatility
does earn higher returns, but short-term over-reaction forces returns to be low in the next month.
If we hold high idiosyncratic risk stocks for a long horizaN & 12 months), we might see a
positive relation between idiosyncratic risk and average returns. The second row of Table 11
shows that this is not the case. For thd /12 strategy, we still see very low FF-3 alpha’s for
quintile 5, and the 5-1 difference in alpha’s is still -0.67% per month, which is significant at the
1% level.
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By restricting the formation period tb = 1 month, our previous results may just be cap-
turing various short-term events that impact idiosyncratic volatility. For example, the portfolio
of stocks with high idiosyncratic volatility may be largely composed of stocks that have just
made, or are just about to make, earnings announcements. To ensure that we are not capturing
specific short-term corporate events, we extend our formation periad=tol2 months. The
third row of Table 11 reports FF-3 alpha’s fot 2/1/1 strategy. Using one entire year of data to
compute idiosyncratic volatility does not remove the anomalous low return-high idiosyncratic
risk pattern: the 5-1 difference in alpha’s is -1.12% per month. Similarly, the patterns are robust
for the12/1/12 strategy, which has a 5-1 alpha of -0.77% per month.

While the low returns to high idiosyncratic risk stocks are amazingly robust to different for-
mation and holding periods, a further possibility is that volatility, by definition, symmetrically
treats gains and losses. Since volatility is asymmetric (and larger with downward moves), high
idiosyncratic risk stocks may have average returns during normal or bull markets but their low
returns may be driven largely by bear market periods. We can check this hypothesis by examin-
ing the returns of high idiosyncratic volatility stocks conditioning on observations which have
the lowest 20% of market returns and comparing them to bull markets that have the highest 20%
of market returns. For the periods of lowest (highest) 20% of market returns, the FF-3 alpha of
quintile 5 is -2.83% (-2.98%) per month, both highly significant at the 1% level. Hence, stocks
with high idiosyncratic risk earn low returns in both bull and bear markets.

We also find that the low returns of quintile 5 are robust over NBER recessions and expan-
sions. During NBER expansions (recessions), the FF-3 alpha of quintile 5 is -1.19% (-1.88%).
Both the expansion and recession FF-3 alpha’s are significant at the 1% level. There are more
negative returns to high idiosyncratic volatility stocks during recessions, but the fact that the
t-statistic in NBER expansions is -7.07 shows that the low returns to high idiosyncratic risk is
also a phenomenon that thrives during expansions. A final possibility is that this effect is con-
centrated during the most volatile periods in the market. To test for this possibility, we compute
FF-3 alpha’s of quintile 5 conditioning on periods with the lowest or highest 20% of absolute
moves of the market return. These are ex-post periods of low or high market volatility. During
stable (volatile) periods, the FF-3 alpha of quintile 5 is -1.70% (-0.89%) per month, both sig-
nificant at the 5% level. Hence, the most negative returns of the high idiosyncratic risk strategy
are earned during periods when the market is stable. Hence, these results indicate that it is not
bull or bear market periods, asymmetries across the business cycle, or the clustering of periods
of volatility that is driving the low returns to high idiosyncratic risk exposure.
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4 Conclusion

Stocks with high exposure to innovations in systematic volatility earn low returns. We proxy
for innovations in aggregate volatility by using changes intheX index, an index of Black-
Scholes (1973) implied volatilities constructed by the Chicago Board of Exchange. The low
returns earned by stocks with high coefficient loadings to changes i tiieindex is consis-

tent with systematic volatility carrying a negative price of risk. We estimate that a mimicking
factor for market volatility risk has a significant negative mean of -0.87% per month in the
cross-section and is robust to controlling for size, value, momentum and liquidity factors.

According to a standard asset pricing framework, idiosyncratic volatility should not be
priced. Recent theories predict that stocks with high idiosyncratic volatility may earn high
expected returns to compensate for imperfect diversification. A puzzling result that we uncover
is that stocks with high idiosyncratic volatility have abysmally low returns. In particular, using
the Fama-French (1993) model to adjust for systematic risk, a quintile portfolio with stocks
with the highest idiosyncratic risk earns total returns of just -0.02% per month. The results are
surprisingly robust to controlling for size, value, size, liquidity, volume and momentum effects
and the effect persists in bull and bear markets, NBER recessions and expansions, and volatile
and stable periods. Accounting for exposure to aggregate volatility helps to price, but cannot
remove, the anomalous low returns of stocks with high idiosyncratic risk.

We also find that the low returns of high idiosyncratic volatility stocks persist for different
formation and holding periods as long as one year. This rules out stories of short-term over-
reaction or reaction to short-term corporate events. It is also unlikely that economic agents
actually prefer stocks with high idiosyncratic risk, leading to their low returns. If this were the
case, agents would exhibit no home bias. Hence, our results on the cross-sectional expected
return patterns to idiosyncratic volatility present something of a puzzle.
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Table 1: Daily Sample Moments

Correlations
Mean Stdev Auto MKT SVOL ASVOL RVOL ARVOL VIX

MKT 0.0004 0.0097 0.08

SVOL 0.0099 0.0056 0.98 -0.04

ASVOL 0.0001 0.0148 0.07 -0.25 0.08

RVOL 0.0120 0.0087 0.49 -0.23 0.54 0.43

ARVOL -0.0000 0.0088 -0.43 -0.26 -0.00 0.40 0.50
VIX 0.2052 0.0785 0.94 -0.18 0.79 0.15 0.68 0.03
AVIX 0.0000 0.0265 -0.07 -0.64 0.00 0.45 0.29 0.39 0.16

We report daily sample moments of the excess market réthii(I", sample volatilitySV O L, range-based
volatility measureRVOL, and the daily volatilityl’ /X index from the CBOEASVOL, ARVOL and
AVIX refer to daily changes iSVOL, RVOL andVIX, respectively. ‘Auto’ denotes daily autocorrela-
tion. There are 3784 daily observations from January 1986 to December 2000.
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Table 2: Portfolios Sorted by Exposure to Aggregate Volatility Shocks

Std  Turn- % Mkt CAPM  FF-3
Rank Mean Dev over Share Size B/M Alpha Alpha

Portfolios Sorted bysasvor

1 111 565 074 7.9% 342 092 -027 -0.16
[-1.44] [-0.82]

2 116 458 078 255% 424 084 -010 -0.17
[-0.89] [-1.48]

3 141 431 072 305% 420 088 020 015
[2.27] [2.06]

4 1.34 457 077 276% 428 084 009  0.06
[1.37] [0.90]

5 112 613 075 84% 344 094 -032 -0.07
[-1.48] [-0.43]
51  0.01 -0.04  0.09
[0.02] [-0.15] [0.30]

Portfolios Sorted byYsarvor

1 131 6.62 074 7.0% 375 096 -0.16  0.05
[-0.68] [0.27]
2 1.18 461 078 242% 481 075 -0.08 -0.11
[-0.83] [-1.06]
3 1.28 437 073 31.4% 490 077 0.06  -0.03
[0.64] [-0.46]
4 154 450 078 28.9% 490 075 029  0.28
[4.04] [3.69]
5 089 560 075 85% 377 098 -048 -0.34
[-2.64] [-2.04]
51  -0.42 032 -0.39
[-1.45] [-1.07] [-1.31]

Portfolios Sorted byav 1 x

1 164 553 074 94% 370 089 027  0.30
[1.66] [1.77]
2 139 443 078 287% 477 073 018  0.09
[1.82] [1.18]
3 1.36  4.40 072 304% 477 076 0.3  0.08
[1.32]  [1.00]
4 121 479 078 240% 476 073 -0.08 -0.06
[-0.87] [-0.65]
5 060 655 073 7.4% 373 089 -088 -0.53
[-3.42] [-2.88]
51  -1.04 -1.15  -0.83
[-3.90] [-3.54] [-2.93]

We form value-weighted quintile portfolios every month from regressing excess stock returns of individual
stocks onASVOL, ARVOL or AVIX, controlling for theM KT factor, as in equation (10). The regres-

sion is run on daily excess returns using data over the previous month. Stocks are sorted into quintiles based
on the regression coefficients\svor, Sarvor Of Basvor from lowest (quintile 1) to highest (quintile

5). The statistics in the columns labelled Mean and Std Dev are measured in monthly percentage terms.
Size reports the average log market capitalization for firms within the portfolio and B/M reports the average
book-to-market ratio. The numbers in the Turnover column list the average proportion of firms that leave the
quintile portfolio each month. The row 5-1 refers to the difference in monthly returns between portfolio 5
and portfolio 1. The Alpha columns report Jensen’s alpha with respect to the CAPM or Fama-French (1993)
three-factor model. Robust Newey-West (1987) t-statistics are reported in square brackets. The sample period
is from January 1986 to December 2000.
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Table 3: Portfolios Sorted ofiay ;7 x Controlling for Liquidity or Volume

CAPM  FF-3
Rank Mean StdDev Alpha Alpha

Panel A: Controlling for Liquidity

1 157 547 021  0.19
[1.31] [1.34]

2 148  4.48 027 015
[2.25] [1.68]

3 140 454 015  0.09
[1.59] [0.97]

4 130 474 002  -0.02
[0.21] [0.17]

5 089 584  -052 -0.36
[-2.87] [-2.09]

51  -0.68 -0.73  -0.55
[-3.04] [-2.99] [-2.15]

Panel B: Controlling for Volume

1 110 473  -011 -0.13
[-0.58] [-1.34]
2 118 401  0.08  -0.08

[0.46] [-0.92]

3 118 378 010 -0.04
[0.66] [-0.50]

4 098 418  -017 -0.23
[-1.06] [2.16]

5 038 531 -090 -0.71
[-3.86] [-4.84]

51  -0.72 079  -0.58
[-3.49] [-3.22] [-3.03]

In Panel A, we first sort stocks into five quintiles based on their historical liquidity beta, followastpP

and Stambaugh (2003). Then, within each quintile, we sort stocks based ofitheir coefficient loadings

into five portfolios. All portfolios are rebalanced monthly and value-weighted. The five portfolios sorted on
Bavrx are then averaged over each of the five liquidity beta portfolios. Hence, theparee quintile
portfolios controlling for liquidity. In Panel B, the same approach is used except we first sort stocks into five
portfolios based on their past trading volume, and then within each quintile, stocks are sgsted,an The
portfolios in Panel B are averaged over the five volume portfolios. Hence, théater quintile portfolios
controlling for liquidity. The table reports alphas from a CAPM and Fama-French (1993) regression. The
row 5-1 refers to the difference in monthly returns between portfolio 5 and portfolio 1. Robust Newey-West
(1987) t-statistics are reported in square brackets. The sample period is from January 1986 to December
2000.
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Table 4: A Cross-Sectional Volatility Factor

Mean StdDev Auto
VOL -0.58 3.29 -0.15

Correlation of Factors
MKT SMB HML UMD
SMB 0.17
HML -0.50 -0.50
UMD 0.22 0.32 -0.46
VOL 0.16 0.48 -0.40 0.22

Regressing’OL onto Various Factors

const MKT SMB HML UMD AdjR?

068 0.11 0.02
[-2.74] [1.03]
046 -001 034 -0.21 0.25

[2.12] [-0.09] [3.07] [-0.21]
047 -001 034 -021 001 025
[1.94] [-0.09] [3.24] [-1.36] [0.08]

The factorVVOL is formed by sorting all stocks into three portfolios based’an ;x from the regression

(10) run at a daily frequency using data over the previous month and the portfolios are rebalanced every
month. The three value-weighted portfolios have breakpoints set at one-third and two-third$af the
coefficients for all stocks. We take the return difference between the top third and bottom third portfolios to
form VOL. We report monthly summary statistics GID L in percentage terms, and correlationsiad L

with respect to other factorSM B, HM L, the size and value factors of Fama and French (1993), and the
momentum factof/ M D from Kenneth French’s web site. We also report regressions@f onto various
combinations oM K'T', SM B, HM L andU M D. Robust Newey-West (1987) t-statistics are reported in
square brackets. The sample period is from January 1986 to December 2000.
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Table 5: Pricing Portfolios Sorted B3ay 7 x

Panel A: Pricing Savrx Quintile Portfolios Using Various Factor Models

GRS Test Portfolio Alpha’s

Model p-value 1 2 3 4 5 5-1

MKT 0.007 0.27 0.18 0.13 -0.08 -0.88 -1.15
[1.66] [1.82] [1.32] [-0.87] [-3.42] [-3.54]

MKT SMB HML 0.030 0.30 0.09 0.08 -0.06 -0.53 -0.83
[1.77] [1.18] [1.00] [-0.65] [-2.88] [-2.93]

MKT SMB HML UMD 0.023 0.44 0.11 -0.00 -0.01 -0.48 -0.92
[2.50] [1.20] [-0.03] [-0.12] [-2.36] [-2.86]

MKT VOL 0.116 0.03 -0.07 0.12 0.11 -0.34 -0.36
[0.27] [-1.47] [-1.44] [1.77] [-2.19] [-2.68]

MKT SMB HML VOL 0.150 0.05 -0.07 0.09 0.08 -0.27 -0.33

[0.43] [-1.36] [1.25] [1.45] [-2.11] [-2.43]
MKT SMB HML UMD VOL 0106 0.18 -0.05 001 014 -0.22 -0.40
[1.55] [-0.86] [0.11] [2.34] [-1.67] [-2.78]

Panel B: Factor Loadings

MKT SMB HML UMD VOL

1 112 027 -018 -012 -0.54
[43.8] [5.06] [-2.65] [-3.38] [-13.5]
2 098 -005 -002 -002 -0.34
[69.9] [-2.38] [-0.69] [-0.87] [-16.3]
3 099 -006 012 007 002
[51.2] [-1.83] [2.11] [2.64] [0.44]
4 104 -004 005 -005 0.32
[75.7] [1.93] [2.60] [-2.45] [11.3]
5 1.08 030 -026 -0.05 0.57
[30.2] [6.62] [4.61] [1.60] [12.1]

In Panel A, we report a Gibbons-Ross-Shanken (1989) (GRS) test for pricing the quintile portfolios sorted
by Bavrx, reported in Table 2, for various factor models using combinations of the faktdfg", SM B,

HML, UMD andVOL. UMD is the momentum factor from Kenneth French’s website Bdl. is the
volatility factor. The columns labelled "1’ through '5’ report portfolio alpha’s from each linear factor model.
The column labelled '5-1’ refers to the difference in monthly returns between portfolio 5 and portfolio 1.
Panel B reports factor loadings from the most comprehengivel’, SM B, HM L, UM D andV OL factor

model. Robust Newey-West (1987) t-statistics are reported in square brackets. The sample period is from
January 1986 to December 2000.
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Table 6: Estimating the Price of Volatility by Fama-MacBeth (1973)
Panel A: Test Portfolio Fama-French (1993) Alpha’s

Ranking OngAVIX

1 low 2 3 4 5 high
Ranking 1low -0.54 0.13 -0.25 0.10 -1.04
onfBykr [-1.06] [0.63] [-1.13] [0.51] [-3.76]
2 -0.22 0.02 -0.39 -017  -0.57
[-1.24] [0.14] [-2.20] [-1.30] [-2.41]
3 -0.20 -0.06 -0.00 -0.39 -0.28
[-1.08] [-0.31] [-0.01] [-2.38] [-1.56]
4 0.26 -0.04 -0.03 -011 -0.61

[1.04] [-0.33] [0.19] [0.99] [-2.61]
5high 031 030 010 -0.10 -0.66
[0.95] [1.42] [0.48] [-0.41] [-1.92]

Panel B: Fama-MacBeth (1973) Factor Premiums

MKT SMB HML UMD LIQ VOL Adj R?

0.22 -0.02
[0.34]

1.06  -0.80  0.13 0.50
[1.59] [-1.82] [0.26]

125 069 031 032 0.48
[1.76] [-1.47] [0.56] [0.41]

1.27 077 060 0.11  -0.03 0.51
[1.67] [-1.48] [1.00] [0.13] [-1.41]

1.18 -0.87 0.56
[1.78] [-2.46]

052 -0.82 -0.33 -0.83 0.67
[0.77] [-1.85] [-0.65] [-2.37]

059 -0.78 -026 0.22 -0.83 0.65
[0.86] [-1.70] [-0.49] [0.29] [-2.37]

059 -087 004 -001 -003 -0.87 0.70
[0.79] [1.71] [0.07] [0.02] [1.86] [-2.26]

In Panel A, we report Fama-French (1993) alpha’s for the 25 portfolios sorted firdt,@n- and then on

Bavix- These 25 portfolios are used as test assets in estimating the factor premiums using Fama-MacBeth
(1973) in Panel BM KT is the excess return on the market portfobd/ B and H M L are the Fama-French

(1993) size and value factor&,M D is the momentum factor from Kenneth French’s website BAQ@ is

the aggregate liquidity measure fromag®or and Stambaugh (2003).OL is the volatility factor. Robust
Newey-West (1987) t-statistics are reported in square brackets. The sample period is from January 1986 to
December 2000.
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Table 7: Zero-Beta Straddiel' kR Returns and’O L Factor Regressions

const MKT VOL STR AdjR?

VOL Regressions  -0.28 0.01 0.03
[-1.46] [1.19]
-0.27  -0.04 0.01 0.03
[-0.22] [-0.74] [1.15]

STR Regressions  -9.96 3.73 0.03
[-2.21] [0.78]
-8.23 295 264 0.15

[-1.77] [-1.42] [0.89]

We regressST' R, the monthly returns of zero-beta straddle positions constructed by Coval and Shumway
(2001), ontoM KT and VOL and regres3’OL onto M KT and ST R. Robust Newey-West (1987) t-
statistics are reported in square brackets. The sample period is from January 1986 to December 1995.
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Table 8: Portfolios Sorted by Volatility

Std  Turn- % Mkt CAPM  FF-3
Rank Mean Dev over Share Size B/M Alpha Alpha

Portfolios Sorted by Total Volatility

1 1.06 371 040 41.7% 466 088 014  0.03
[1.84] [0.53]
2 115 448 063 33.7% 470 081 013  0.08

[2.14] [1.41]

3 122 563 067 155% 410 082 0.07 0.12
[0.72] [1.55]
4 099 7.15 064 6.7% 3.47 086 -0.28 -0.17
[-1.73] [1.42]
5 0.09 830 041 24% 257 108 -1.21 -1.16
[-5.07] [-6.85]
51  -0.97 -1.35  -1.19
[-2.86] [-4.62] [-5.92]

Portfolios Sorted by Idiosyncratic Volatility Relative to the CAPM

1 110 3.87 041 516% 482 086 015  0.09
[2.17] [1.88]

2 1.13 470 063 285% 471 080 0.07  0.05
[1.38] [0.78]

3 123 5.86 067 12.4% 406 082 0.05  0.09
[0.54] [1.11]

4 094 7.07 064 55% 341 0.87 -0.32 -0.25
[-2.03] [-2.45]

5 001 819 041 21% 251 110 -129 -1.28
[-5.32] [-7.84]

51  -1.11 -1.44  -1.37
[-3.38] [-4.88] [7.25]

Portfolios Sorted by Idiosyncratic Volatility Relative to FF-3

1 1.04 383 041 535% 486 085 011  0.04
[1.57] [0.99]
2 1.16 474 064 27.4% 472 080 011  0.09

[1.98] [1.51]

3 120 585 068 11.9% 407 082 004  0.08
[0.37] [1.04]
4 087 713 065 52% 342 087 -0.38 -0.32
[-2.32] [-3.15]
5 002 816 042 19% 252 110 -127 -1.27
[-5.00] [-7.68]
51  -1.06 -1.38  -1.31
[-3.10] [-4.56] [-7.00]

We form value-weighted quintile portfolios every month by sorting stocks based on total volatility, idiosyn-
cratic volatility relative to the CAPM and idiosyncratic volatility relative to the Fama-French (1993) model.
Portfolios are formed every month, based on volatility computed using daily data over the previous month.
Portfolio 1 (5) is the portfolio of stocks with the lowest (highest) volatilities. The statistics in the columns
labelled Mean and Std Dev are measured in monthly percentage terms. Size reports the average log market
capitalization for firms within the portfolio and B/M reports the average book-to-market ratio. The num-
bers in the Turnover column list the average proportion of firms that leave the quintile portfolio each month.
The row '5-1’ refers to the difference in monthly returns between portfolio 5 and portfolio 1. The Alpha
columns report Jensen’s alpha with respect to the CAPM or Fama-French (1993) three-factor model. Robust
Newey-West (1987) t-statistics are reported in square brackets. The sample period is July 1963 to December
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Table 9: Portfolios Sorted on Idiosyncratic Volatility (FF-3) Controlling for Various Effects

Ranking on Idiosyncratic Volatility

1low 2 3 4 5 high 5-1
NYSE Stocks Only 0.06 0.04 0.02 -0.04 -0.60 -0.66
[1.20] [0.75] [0.30] [-0.40] [-5.14] [-4.85]
Size Quintiles 1 small 0.11 0.26 0.31 0.06 -0.43 -0.55
[0.72] [1.56] [1.76] [0.29] [-1.54] [-1.84]
2 0.19 0.20 -0.07 -0.65 -1.73 -1.91
[1.49] [1.74] [-0.67] [-5.19] [-8.14] [-7.69]
3 0.12 0.21 0.03 -0.27 -1.49 -1.61
[1.23] [2.40] [0.38] [-3.36] [-10.1] [-7.65]
4 0.03 0.22 0.17 -0.03 -0.82 -0.86

[0.37] [2.57] [2.47] [0.45] [6.61] [4.63]
Slarge 009 004 003 014 -017 -0.26
[1.62] [0.72] [0.51] [1.84] [1.40] [-1.74]

Controlling for Size 0.11 0.18 0.09 -0.15 -0.93 -1.04
[1.30] [2.49] [1.35] [-1.99] [-6.81] [-5.69]
Controlling for Book-to-Market 0.61 0.69 0.71 0.50 -0.19 -0.80
[3.02] [2.80] [2.49] [1.47] [-0.48] [-2.90]
Controlling for Liquidity 0.08 0.09 -0.01 -0.16 -1.01 -1.08
[1.71] [1.53] [-0.09] [-1.62] [-8.61] [-7.98]
Controlling for Volume -0.03 0.02 -0.01 -0.39 -1.25 -1.22
[-0.49] [0.39] [-0.32] [-7.11] [-10.9] [-8.04]
Controlling for Dispersion 0.12 -0.07 0.11 0.01 -0.27 -0.39
in Analysts’ Forecasts [1.57] [-0.76] [1.12] [0.09] [-1.76] [-2.09]
Controlling for Momentum 0.07 0.08 0.09 -0.05 -0.59 -0.66

[0.43] [0.94] [1.26] [0.47] [-3.60] [2.71]

The table reports Fama and French (1993) alpha’s, with robust Newey-West (1987) t-statistics in square
brackets. All the strategies atg¢0/1 strategies, but control for various effects. The column '5-1’ refers to

the difference in FF-3 alpha’s between portfolio 5 and portfolio 1. In the panel labelled 'NYSE Stocks Only’,
we sort stocks into quintile portfolios based on their idiosyncratic volatility, relative to the FF-3 model, using
only NYSE stocks. We use daily data over the previous month and rebalance monthly. In the panel labelled
'Size Quintiles’, each month we first sort stocks into five quintiles on the basis of size. Then, within each size
quintile, we sort stocks into five portfolios sorted by idiosyncratic volatility. In the panels controlling for size,
liquidity volume and momentum, we perform a double sort. Each month, we first sort stocks based on the
first characteristic (size, book-to-market, liquidity, volume, dispersion of analysts’ forecasts, or momentum)
and then, within each quintile we sort stocks based on idiosyncratic volatility, relative to the FF-3 model.
The five idiosyncratic volatility portfolios are then averaged over each of the five characteristic portfolios.
Hence, they represent idiosyncratic volatility quintile portfolios controlling for the characteristic. Liquidity
represents theddtor and Stambaugh (2003) historical liquidity beta, and momentum represents past 1-month
returns. The sample period is July 1963 to December 2000 for all controls with the exceptions of liquidity
(February 1968 to December 2000) and the dispersion of analysts’ forecasts (February 1983 to December
2000). All portfolios are value-weighted.
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Table 10: Pricing Portfolios Sorted on Volatility

Panel A: Pricing Idiosyncratic Volatility (Relative to FF-3) Quintile Portfolios Using Various Factor Models

GRS Test Portfolio Alpha’s
Model p-value 1 2 3 4 5 5-1
MKT 0.000 0.30 -0.01 -0.17 -0.93 -1.92 -2.22
[2.16] [-0.13] [-0.83] [-3.02] [-3.98] [-3.73]
MKT SMB HML 0.000 0.13 -0.83 0.05 -0.48 -1.31 -1.43
[1.64] [-0.06] [0.38] [-2.82] [-4.04] [-3.91]
MKT SMB HML UMD 0.000 0.12 -0.11 0.03 -0.48 -1.28 -1.36
[1.63] [-0.86] [0.24] [-2.74] [-4.09] [-3.37]
MKT VOL 0.001 0.11 -0.10 -0.01 -0.56 -1.35 -1.47
[1.28] [-0.83] [-0.04] [-1.99] [-3.45] [-3.23]
MKT SMB HML VOL 0.000 0.07 -0.11 0.03 -0.48 -1.28 -1.34
[1.04] [-0.86] [0.24] [-2.74] [-4.09] [-3.90]
MKT SMB HML UMD VOL 0.003 0.06 0.06 0.14 -0.40 -1.21 -1.26
[0.98] [0.63] [1.13] [-2.22] [-3.49] [-3.41]

Panel B: Factor Loadings

MKT SMB HML UMD VOL
1 09 -019 017 001 -0.13
[43.6] [4.92] [2.93] [0.31] [-2.39]
2 108 000 -005 -0.16 -0.11
[35.4] [0.01] [1.12] [-3.44] [-2.44]
3 117 043 -022 -010 -0.04
[33.9] [6.81] [3.02] [2.24] [-0.79]
4 121 084 -039 -007 -001
[22.4] [9.22] [357] [1.18] [-0.09]
5 110 123 -042 -007 0.07
[13.2] [9.30] [-1.90] [-0.64] [0.37]

In Panel A, we report a Gibbons-Ross-Shanken (1989) (GRS) test for pricing the quintile portfolios sorted
by idiosyncratic volatility relative to FF-3, reported in the last panel of Table 8, for various factor models
using combinations of the factord K'T', SM B, HM L, UMD andVOL. UMD is the momentum factor

from Kenneth French’s website af@D L is the volatility factor. The columns labelled '1’ through '5’ report
portfolio alpha’s from each linear factor model. The column labelled '5-1’ refers to the difference in monthly
returns between portfolio 5 and portfolio 1. Panel B reports factor loadings from the most comprehensive
MKT,SMB, HML, UMD andVOL factor model. Robust Newey-West (1987) t-statistics are reported

in square brackets. The sample period is from January 1986 to December 2000.
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Table 11: Quintile Portfolios of FF-3 Idiosyncratic Volatility @f/M /N Strategies

Ranking on Idiosyncratic Volatility
Strategy 1 low 2 3 4 5 high 5-1

1/1/1 0.06 004 009 -018 -0.82 -0.88
[1.47] [0.77] [1.15] [1.78] [-4.88] [-4.63]

1/1/12 003 002 -0.02 -017 -0.64 -0.67
[0.91] [0.43] [0.37] [1.79] [5.27] [4.71]

12/1/1  0.04 008 -0.01 -029 -1.08 -1.12
[1.15] [1.32] [0.08] [-2.02] [-5.36] [-5.13]

12/1/12  0.04 004 -002 -035 -0.73 -0.77
[1.10] [0.54] [0.23] [-2.80] [4.71] [4.34]

The table reports Fama and French (1993) alpha’s, with robust Newey-West (1987) t-statistics in square
brackets. The column '5-1' refers to the difference in FF-3 alpha’s between portfolio 5 and portfolio 1. We
rank stocks into quintile portfolios of idiosyncratic volatility, relative to FF-3, usin@d//N strategies. At
montht, we compute idiosyncratic volatilities from the regression (12) on daily data ovemaonth period

from monthst — L — M to montht — M. At time ¢, we construct value-weighted portfolios based on these
idiosyncratic volatilities and hold these portfolios fif months, following Jegadeesh and Titman (1993),
except our portfolios are value-weighted. The sample period is July 1963 to December 2000.
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The figure showsSVOL, RVOL andVIX, plotted at a monthly frequency. We annuali@¥ OL and
RV OL by multiplying the daily series by/250. The sample period is January 1986 to December 2000.

Figure 1:SVOL andVIX
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The figure shows the level of tHé7 X index (top panel) and cumulative returns of #é& L factor (bottom
panel). The sample period is January 1986 to December 2000.

Figure 2: Cumulative Returns of théO L Factor
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