Tissue Culture: Viability and Proliferation Studies

Purpose

- MTT Viability Assay: To verify that there is a linear relationship between absorbance and cell concentration
- Anti-PCNA Staining: To determine the connection between media conditions and cell division
- Quantitative Growth Proliferation Assay: To assess the effects of serum on growth and replication of cells

Methods for the MTT Viability Assay

- Stock HDF (Human Dermal Fibroblast) solution diluted with DMEM to six different concentrations
- Incubated for 48 hours on 24 well plate
- Cell concentration confirmed via Coulter counter
- Absorbance reading measured using MTT dye solution and spectrophotometer (570 nm)
- Measured and recorded absorbance as a function of concentration

Methods for Anti-PCNA Staining

- Incubated HDF cells for 48 hours under one of three conditions: DMEM with 1% antibiotic and 1, 5, or 10% serum
- Added Anti-PCNA primary antibody, then Anti-mouse IgG Horseradish Peroxidase (HRP) secondary antibody to cells
- Added Aminoethyl carbazole (AEC) and hematoxylin for staining
 - AEC binds to horshradish peroxidase to stain dividing cell nuclei red
 - Hematoxylin stains all cell nuclei a blue color
- Using light microscope, estimated percentage of cells that are preparing to divide for each condition (% of red nuclei)

Methods for Quantitative Cell Proliferation Assay

- Week-long study with 3 observation points
- Seeded HDF cells on 24 well plate in DMEM with 1% serum and incubated for 4 hours
- Switched media to 1 of 3 conditions: DMEM with 1, 5, or 10% serum
- At each observation point (2, 5, and 7 days), cells trypsinized and cell count recorded using Coulter counter, then converted to concentration

MTT Assay: Linear Relationship for Absorbance vs. Concentration

Concentration (Cells/mL)	Absorbance	
38000	0.562	
26000	0.4	
19000	0.313	
14000	0.218	
6600	0.114	
1600	0.057	
160	0	

• The R² value of the linear fit is 0.9957

• This strongly suggests that absorbance and concentration are linearly related ⁶

Anti-PCNA Staining: More Serum = More Cell Division

Serum Percentage	Percent of nuclei staining red	
1%	40%	
5%	70%	
10%	80%	

- All results are based upon human observation, where red nuclei reflect cells preparing to divide
- Elevated levels of serum result in more availability of nutrients required for cell division
- Thus higher levels of serum promote a higher percentage of cells undergoing cell division, explaining the increasing percent of nuclei staining red

Cell Proliferation Assay: Cell Growth is Exponential Under Ideal Conditions

 After initial cell seeding and before full confluency/media exhaustion, growth in each condition was exponential

• R² values close to 1 for each condition support this conclusion

Cell Proliferation Assay: Doubling Rate is Inversely Related to Serum Percentage in Media

Doubling Time from Graph

Condition	Trendline Equation	k value	Doubling Time (hours)
1%	4600e^0.003x	0.003	230
5%	4300e^0.014x	0.014	50
10%	4300e^0.0167x	0.0167	42

Doubling Time from Exponential Growth Equation

	Doubling time (hours)			
Day	1% Serum	5% Serum	10% Serum	
2	230	71	63	
5	188	45	36	
7	248	53	46	
Average	222	56	48	

• Doubling rate was calculated in two ways: via the exponential trendline equation and via manipulation of the equation

• $N(t) = N_0 * 2^{tf}$ where N(t) is number of cells after t days, N_0 is initial cell count, and f is 1/doubling time

• Both of these methods provide us with similar answers, as the tables indicate

Anti-PCNA Staining vs. Cell Proliferation Assay

- Each case displayed an observable trend
- As percentage of serum increases in DMEM, cell division levels increase
 - Observable directly in Anti-PCNA staining
 - Implied via doubling times in Proliferation Assay
- Anti-PCNA staining more accurate, considering that Coulter counter used in Proliferation Assay may not have only counted cells (detritus, etc.)

Experimental Summary

- MTT Assay concluded that there is a linear relationship between cell concentration and absorbance at 570 nm for HDF cells
- Anti-PCNA Assay and Cell Proliferation Assay concluded that increasing levels of serum will increase the rate at which cell division occurs, and that
- Cell Proliferation Assay concluded that cellular growth is exponential under ideal conditions