EFFECTS OF CULTURE CONDITONS ON HDF CELL BEHAVIOUR

YYY BIOE 342: TISSUE CULTURE

OBJECTIVES

- Qualitative and quantitative assessment of HDF (human dermal fibroblast) cell attachment to different surfaces
- Comparison of different HDF cell viability assessment methods
- Effects of different media conditions of HDF cell proliferation

METHODS: Cell Attachment Assays

- Effects of fibronectin (fn) on HDF attachment to untreated polystyrene plates
 - Control: PBS with 10mg/mL BSA (bovine serum albumin)
 - Partial fn- coated and part control + fn-design wells
 - Fully fn-coated wells
 - 30min plate incubation and 2hr cell incubation
 - Cells rinsed then observed under light microscope
- Test HDF attachment to different polystyrene plate surfaces over 4hrs
 - Untreated
 - TC-treated
 - Fn-treated
 - Cell densities determined using light microscope
 - Time points at .5, 1.25, 2.5 and 4hrs

METHODS: Cell Viability Assessment

- MTT Assay
 - Culture several known cell concentrations on TC-treated plates over 2 days
 - 2hr incubation with MTT dye and 45min with stop solution
 - Obtain absorbance values using spectrophotometer

Live/Dead Fluorescence Assay

- Culture same cell concentrations over 2days
- Test 3 culture conditions
 - PBS
 - Ethanol
 - PBS and 2 drops ethanol
- Cell counts and concentrations determined using Coulter Counter

METHODS: Cell Proliferation

- Culture same cell concentrations on TC-treated plates over 6 days
- Culture in different DMEM serum concentrations
 - 1, 5 and 10% FBS (serum) concentrations
 - 6 wells with 1% FBS for Day 0
 - 3 wells each for the 3 serum concentrations for days 1, 3 and 6
- Cell counts and concentrations determined using Colture Counter

RESULTS: Fibronectin Attachment Assay

[1]

Morphology of attached cells: grouped and elongated with pseudopodia

White/bright: cytoplasm

Dark/hollow: nuclei

Gray: pseudopodia

- No cells on wells not fncoated
- Cells attached only on half of well coated with fn
- Cells attached in shape of fn-coated design (xshape fn-coat)
- Cells attached all over surface coated with fn

RESULTS: Quantitative Cell Attachment Assay Variances

 Two way ANOVA (Analysis of Variance) used to test variances in cell densities based on incubation time and cell plate condition

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Time Points	4.48E+08	3	1.49E+08	17.1	0.00242	4.76
Plate Conditions	4.36E+07	2	2.18E+07	2.49	0.163	5.14
Error	5.24E+07	6	8.74E+06			
Total	5.44E+08	11				
 α = .05 						[3]

• p-value for time points = .00242 < .05

- Differences in incubation time don't significantly affect changes in cell densities
- p-value for plate conditions = .163 > .05
 - Differences in plate conditions (i.e. treated and fn-coated) significantly affect changes in cell densities among wells

RESULTS: Cell Attachment Assays

- Fibronectin attachment
 - Fn enhances ability of cells to adhere and attach to plate surfaces
 - Cells adhere over time, even to non-treated surfaces
 - Qualitative assessment using morphology and confluence observations

- Quantitative attachment
 - Fn-coat more effective than TC-treatment for cell adhesion to plates
 - Cell adhesion dependent on surface treatment
 - Determination of cell densities allows for mathematical analysis

RESULTS: MTT Viability Assays

 Linear relationship observed between absorbance values and original cell concentrations

Absorbances based on original cell concentrations.

RESULTS: Live/Dead Assay

- Ethanol kills cells
 - .25mL vs. 2 drops
- Live cells stained green
 - 100% in well with PBS
 - ~70% in well with 2 drops of ethanol
- Dead cells stained red
 - 100% in well with .25mL ethanol
 - ~30% in well with 2 drops of ethanol

[2]

RESULTS: Comparison of the two Assays

ASSAY	METHOD	ADVANTAGES	DISADVANTAG ES
MTT	Measures mitochondrial activity [4]	 Live/dead cell differentiation Development of mathematical (linear) relationship 	•Unable to reuse cell samples
Live/Dead	Measures via nuclear envelope integrity [4]	 Live/dead cell differentiation Visual representation of data Test effects of toxic substances 	•Unable to differentiate under light microscope

RESULTS: Effects of Serum Concentrations on HDF Cell Proliferation

Cell proliferation is enhanced with the 5% and 10% serum concentrations when compared to the 1%

SUMMARY

- Different surfaces affect HDF cell attachment
 - TC-treated and fn-coated plates result in more cells attached
 - Fibronectin enhances HDF cell ability to attach to a surface
- Cell viability assessment methods
 - MTT: Mathematical relationship through spectroscopy
 - Live/Dead: Visual assessment through fluorescence

Different DMEM serum concentrations affect HDF cell proliferation

- Of the 3 tested, 10% allowed for most growth
- Exponential relationships can be used to characterize cell growth

REFERENCES

- All methods taken from:
 - Dr. Saterbak and Dr. McHale. <u>Tissue Culture Lab Module:</u> <u>Lab Protocols.</u> Department of Bioengineering, Rice University. 2001-2009.
 - 1.<u>http://www.celluminate.com/assets/images/sct2.jpg</u>
 - 2.<u>http://www.nature.com/jid/journal/v117/n2/thumbs/5601147</u> <u>f3th.gif</u>
 - 3. Values for untreated obtained from classmate XXX.

4.<u>http://www.protocol-online.org/biologybjh</u>